Trace forms on the cyclotomic Hecke algebras and cocenters of the cyclotomic Schur algebras
被引:1
|
作者:
He, Zhekun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
He, Zhekun
[1
]
Hu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, MIIT Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Hu, Jun
[2
]
Lin, Huang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Lin, Huang
[1
]
机构:
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, MIIT Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R China
We define a unified trace form tau on the cyclotomic Hecke algebras H-n,H-K of type A, which generalize both Malle-Mathas' trace form on the non-degenerate version (with Hecke parameter xi &NOTEQUexpressionL; 1) and Brundan-Kleshchev's trace form on the degenerate version. We use seminormal basis theory to construct an explicit pair of dual bases for H-n,H-K with respect to the form. We also construct an explicit basis for the cocenter of the corresponding cyclotomic Schur algebra, which shows that the cocenter has dimension independent of the ground field K, the Hecke parameter xi and the cyclotomic parameters Q(1), . . . , Q(l). (c) 2022 Elsevier B.V. All rights reserved.