Hysteresis and orbital pacing of the early Cenozoic Antarctic ice sheet

被引:2
|
作者
Van Breedam, Jonas [1 ,2 ]
Huybrechts, Philippe [1 ,2 ]
Crucifix, Michel [3 ]
机构
[1] Vrije Univ Brussel, Earth Syst Sci, Brussels, Belgium
[2] Vrije Univ Brussel, Dept Geog, Brussels, Belgium
[3] UCLouvain, Earth & Life Inst, Louvain La Neuve, Belgium
关键词
TIPPING POINTS; CLIMATE; GREENLAND; IMPACT; GLACIATION; FEEDBACK;
D O I
10.5194/cp-19-2551-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The hysteresis behaviour of ice sheets arises because of the different thresholds for growth and decline of a continental-scale ice sheet depending on the initial conditions. In this study, the hysteresis effect of the early Cenozoic Antarctic ice sheet to different bedrock elevations is investigated with an improved ice sheet-climate coupling method that accurately captures the ice-albedo feedback. It is shown that the hysteresis effect of the early Cenozoic Antarctic ice sheet is similar to 180 ppmv or between 3.5 and 5 circle C, depending only weakly on the bedrock elevation dataset. Excluding isostatic adjustment decreases the hysteresis effect significantly towards similar to 40 ppmv because the transition to a glacial state can occur at a warmer level. The rapid transition from a glacial to a deglacial state and oppositely from deglacial to glacial conditions is strongly enhanced by the ice-albedo feedback, in combination with the elevation-surface mass balance feedback. Variations in the orbital parameters show that extreme values of the orbital parameters are able to exceed the threshold in summer insolation to induce a (de)glaciation. It appears that the long-term eccentricity cycle has a large influence on the ice sheet growth and decline and is able to pace the ice sheet evolution for constant CO 2 concentration close to the glaciation threshold.
引用
收藏
页码:2551 / 2568
页数:18
相关论文
共 50 条
  • [1] Hysteresis in cenozoic antarctic ice-sheet variations
    Pollard, D
    DeConto, RM
    GLOBAL AND PLANETARY CHANGE, 2005, 45 (1-3) : 9 - 21
  • [2] The hysteresis of the Antarctic Ice Sheet
    Garbe, Julius
    Albrecht, Torsten
    Levermann, Anders
    Donges, Jonathan F.
    Winkelmann, Ricarda
    NATURE, 2020, 585 (7826) : 538 - +
  • [3] The hysteresis of the Antarctic Ice Sheet
    Julius Garbe
    Torsten Albrecht
    Anders Levermann
    Jonathan F. Donges
    Ricarda Winkelmann
    Nature, 2020, 585 : 538 - 544
  • [4] A coupled climate-ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet
    DeConto, RM
    Pollard, D
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2003, 198 (1-2) : 39 - 52
  • [5] Hysteresis of the Antarctic Ice Sheet With a Coupled Climate-Ice-Sheet Model
    Leloup, G.
    Quiquet, A.
    Roche, D. M.
    Dumas, C.
    Paillard, D.
    GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (05)
  • [6] Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene
    M. O. Patterson
    R. McKay
    T. Naish
    C. Escutia
    F. J. Jimenez-Espejo
    M. E. Raymo
    S. R. Meyers
    L. Tauxe
    H. Brinkhuis
    Nature Geoscience, 2014, 7 : 841 - 847
  • [7] Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene
    Patterson, M. O.
    McKay, R.
    Naish, T.
    Escutia, C.
    Jimenez-Espejo, F. J.
    Raymo, M. E.
    Meyers, S. R.
    Tauxe, L.
    Brinkhuis, H.
    NATURE GEOSCIENCE, 2014, 7 (11) : 841 - 847
  • [8] Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era
    Davies, Bethan J.
    Hambrey, Michael J.
    Smellie, John L.
    Carrivick, Jonathan L.
    Glasser, Neil F.
    QUATERNARY SCIENCE REVIEWS, 2012, 31 : 30 - 66
  • [9] Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux
    Pollard, D
    DeConto, RM
    Nyblade, AA
    GLOBAL AND PLANETARY CHANGE, 2005, 49 (1-2) : 63 - 74
  • [10] Influence of the opening of the Drake Passage on the Cenozoic Antarctic Ice Sheet: A modeling approach
    Cristini, Luisa
    Grosfeld, Klaus
    Butzin, Martin
    Lohmann, Gerrit
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2012, 339 : 66 - 73