A Terminal Set Feasibility Governor for Linear Model Predictive Control

被引:3
|
作者
Skibik, Terrence [1 ]
Liao-McPherson, Dominic [2 ]
Nicotra, Marco M. M. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80303 USA
[2] Swiss Fed Inst Technol, CH-8005 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
Control system synthesis; optimal control; optimization; predictive control; real-time systems; stability analysis; PIECEWISE-CONSTANT REFERENCES; TO-STATE STABILITY; MPC; TRACKING; SYSTEMS; CONSTRAINTS;
D O I
10.1109/TAC.2022.3216967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The feasibility governor (FG) is an add-on unit for model predictive controllers (MPC) that increases the closed-loop region of attraction by manipulating the applied reference to ensure the underlying optimal control problem is always feasible. The FG requires an estimate of the feasible set of the optimal control problem that underlies the MPC; obtaining this estimate can be computationally intractable for high-dimensional systems. This article proposes a modified FG that bypasses the need for an explicit estimate, instead relying entirely on the MPC terminal set. The proposed FG formulation is proven to be asymptotically stable, exhibits zero-offset tracking, satisfies constraints, and achieves finite-time convergence of the reference. Numerical comparisons featuring an MPC with a long prediction horizon show that the FG+MPC system can achieve a comparable closed-loop performance to long-horizon MPC at a significantly reduced computational cost by suitably detuning the terminal controller to enlarge the terminal set.
引用
收藏
页码:5089 / 5095
页数:7
相关论文
共 50 条
  • [1] Feasibility Governor for Linear Model Predictive Control
    Skibik, Terrence
    Liao-McPherson, Dominic
    Cunis, Torbjorn
    Kolmanovsky, Ilya
    Nicotra, Marco M.
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2329 - 2335
  • [2] Stabilizing Linear Model Predictive Control: On the Enlargement of the Terminal Set
    Brunner, Florian D.
    Lazar, Mircea
    Allgoewer, Frank
    [J]. 2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 511 - 517
  • [3] A Feasibility Governor for Enlarging the Region of Attraction of Linear Model Predictive Controllers
    Skibik, Terrence
    Liao-McPherson, Dominic
    Cunis, Torbjorn
    Kolmanovsky, Ilya
    Nicotra, Marco M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (10) : 5501 - 5508
  • [4] A Terminal State Feasibility Governor for Real-Time Nonlinear Model Predictive Control Over Arbitrary Horizons
    Convens, Bryan
    Liao-McPherson, Dominic
    Merckaert, Kelly
    Vanderborght, Bram
    Nicotra, Marco M.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (04) : 1341 - 1356
  • [5] Feasibility issues in linear model predictive control
    Scokaert, POM
    Rawlings, JB
    [J]. AICHE JOURNAL, 1999, 45 (08) : 1649 - 1659
  • [6] Stabilizing model predictive control: On the enlargement of the terminal set
    Brunner, Florian D.
    Lazar, Mircea
    Allgoewer, Frank
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (15) : 2646 - 2670
  • [7] A Computational Governor for Maintaining Feasibility and Low Computational Cost in Model Predictive Control
    Leung, Jordan
    Permenter, Frank
    Kolmanovsky, Ilya V.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (05) : 2791 - 2806
  • [8] Model predictive control of linear systems with nonlinear terminal control
    Chen, WH
    Hu, XB
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) : 327 - 339
  • [9] Weight recentered barrier functions and smooth polytopic terminal set formulations for linear model predictive control
    Feller, Christian
    Ebenbauer, Christian
    [J]. 2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1647 - 1652
  • [10] Economic model predictive control with terminal set dynamic programming for tracking control
    Li, Qing
    Dai, Li
    Yang, Hongjiu
    Sun, Zhongqi
    Xia, Yuanqing
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (10) : 5624 - 5644