Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag

被引:1
|
作者
Henikoff, Steven [1 ,2 ]
Henikoff, Jorja G. [1 ]
Ahmad, Kami [1 ]
Paranal, Ronald M. [3 ]
Janssens, Derek H. [1 ]
Russell, Zachary R. [3 ]
Szulzewsky, Frank [3 ]
Kugel, Sita [3 ]
Holland, Eric C. [3 ]
机构
[1] Fred Hutchinson Canc Ctr, Basic Sci Div, Seattle, WA 98109 USA
[2] Howard Hughes Med Inst, Chevy Chase, MD USA
[3] Fred Hutchinson Canc Ctr, Human Biol Div, Seattle, WA 98109 USA
关键词
CHROMATIN; DEPARAFFINIZATION; EXTRACTION; PROTEINS; MODEL;
D O I
10.1038/s41467-023-41666-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies. Conducting epigenomic studies on FFPE samples is traditionally challenging due to chromatin damage caused due to exposure to formaldehyde. Here, the authors show that an optimisation of their previous CUTAC method allows the production of high-resolution maps of regulatory elements from FFPE samples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag
    Steven Henikoff
    Jorja G. Henikoff
    Kami Ahmad
    Ronald M. Paranal
    Derek H. Janssens
    Zachary R. Russell
    Frank Szulzewsky
    Sita Kugel
    Eric C. Holland
    [J]. Nature Communications, 14 (1)
  • [2] Analysis of formalin-fixed paraffin-embedded (FFPE) samples.
    Stojenov, Petar
    Carter, Scott L.
    Rosshandler, Ivan Imaz
    Sivachenko, Andrey
    Guadarrama, Alberto Salido
    Vazquez, Karie
    Cordoba, Sandra Romero
    Cibulskis, Kristian
    Sougnez, Carrie
    Voet, Douglas
    Saksena, Gordon
    Lichtenstein, Lee
    Zou, Lihua
    Frazer, Scott
    Stewart, Chip
    Beroukhim, Rameen
    Meyerson, Matthew
    Lawrence, Michael S.
    Getz, Gad
    [J]. CANCER RESEARCH, 2013, 73 (08)
  • [3] Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples
    Zhang, Hua
    Polavarapu, Vamsi Krishna
    Xing, Pengwei
    Zhao, Miao
    Mathot, Lucy
    Zhao, Linxuan
    Rosen, Gabriela
    Swartling, Fredrik J.
    Sjoblom, Tobias
    Chen, Xingqi
    [J]. GENOME RESEARCH, 2022, 32 (01) : 150 - 161
  • [4] Proteomic analysis of formalin-fixed, paraffin-embedded melanoma
    Murphy, Michael J.
    Rezaul, Karim
    Phelps, Amanda
    Han, David K.
    [J]. JOURNAL OF CUTANEOUS PATHOLOGY, 2012, 39 (04) : 464 - 466
  • [5] Microarray-CGH analysis of microdissected formalin-fixed paraffin-embedded samples
    Arneson, NCR
    Thiessen, H
    Bull, S
    Done, SJ
    [J]. LABORATORY INVESTIGATION, 2002, 82 (01) : 336A - 336A
  • [6] A cut-off based approach for gene expression analysis of formalin-fixed and paraffin-embedded tissue samples
    Srivastava, Prashant K.
    Kueffer, Stefan
    Brors, Benedikt
    Shahi, Priyanka
    Li, Li
    Kenzelmann, Marc
    Gretz, Norbert
    Groene, Hermann-Josef
    [J]. GENOMICS, 2008, 91 (06) : 522 - 529
  • [7] Automated microRNA detection in formalin-fixed, paraffin-embedded tissue samples
    Jiang, Zeyu
    Pedata, Anne
    Shingler, Taylor
    Behman, Lauren
    Chafin, David
    Day, William
    [J]. CANCER RESEARCH, 2014, 74 (19)
  • [8] MicroSEC filters sequence errors for formalin-fixed and paraffin-embedded samples
    Ikegami, Masachika
    Kohsaka, Shinji
    Hirose, Takeshi
    Ueno, Toshihide
    Inoue, Satoshi
    Kanomata, Naoki
    Yamauchi, Hideko
    Mori, Taisuke
    Sekine, Shigeki
    Inamoto, Yoshihiro
    Yatabe, Yasushi
    Kobayashi, Hiroshi
    Tanaka, Sakae
    Mano, Hiroyuki
    [J]. COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [9] MicroSEC: Sequence error filter for formalin-fixed and paraffin-embedded samples
    Ikegami, Masachika
    Kohsaka, Shinji
    Hirose, Takeshi
    Ueno, Toshihide
    Inoue, Satoshi
    Kanomata, Naoki
    Yamauchi, Hideko
    Mori, Taisuke
    Sekine, Shigeki
    Inamoto, Yoshihiro
    Yatabe, Yasushi
    Kobayashi, Hiroshi
    Tanaka, Sakae
    Akiyama, Toru
    Okuma, Tomotake
    Mano, Hiroyuki
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [10] MicroSEC filters sequence errors for formalin-fixed and paraffin-embedded samples
    Masachika Ikegami
    Shinji Kohsaka
    Takeshi Hirose
    Toshihide Ueno
    Satoshi Inoue
    Naoki Kanomata
    Hideko Yamauchi
    Taisuke Mori
    Shigeki Sekine
    Yoshihiro Inamoto
    Yasushi Yatabe
    Hiroshi Kobayashi
    Sakae Tanaka
    Hiroyuki Mano
    [J]. Communications Biology, 4