Factors affecting the cleavage efficiency of the CRISPR-Cas9 system

被引:4
|
作者
Jung, Won Jun [1 ,2 ]
Park, Soo-Ji [1 ,2 ]
Cha, Seongkwang [1 ,3 ]
Kim, Kyoungmi [1 ,2 ]
机构
[1] Korea Univ, Coll Med, Dept Physiol, Seoul 02841, South Korea
[2] Korea Univ, Coll Med, Dept Biomed Sci, Seoul, South Korea
[3] Korea Univ, Neurosci Res Inst, Coll Med, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
CRISPR-Cas9; system; genome editing; cleavage efficiency; sgRNA; chromatin state; STRAND BREAK REPAIR; GENOME MODIFICATION; IMMUNE-SYSTEM; CRISPR/CAS9; CAS9; NUCLEASES; TOOL;
D O I
10.1080/19768354.2024.2322054
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 50 条
  • [1] A cleavage-based surrogate reporter for the evaluation of CRISPR-Cas9 cleavage efficiency
    Jung, Soo Bin
    Lee, Chae young
    Lee, Kwang-Ho
    Heo, Kyu
    Choi, Si Ho
    NUCLEIC ACIDS RESEARCH, 2021, 49 (15)
  • [2] Principles of DNA cleavage in CRISPR-Cas9
    Ahsan, Mohammad
    Nierzwicki, Qukasz
    East, Kyle W.
    Binz, Jonas
    Hsu, Rohaine V.
    Arantes, Pablo R.
    Skeens, Erin
    Pacesa, Martin
    Jinek, Martin
    Lisi, George P.
    Palermo, Giulia
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 170A - 170A
  • [3] BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models
    Zarate, Oscar A.
    Yang, Yiben
    Wang, Xiaozhong
    Wang, Ji-Ping
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [4] BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models
    Oscar A. Zarate
    Yiben Yang
    Xiaozhong Wang
    Ji-Ping Wang
    BMC Bioinformatics, 23
  • [5] Structural insights into DNA cleavage activation of CRISPR-Cas9 system
    Cong Huai
    Gan Li
    Ruijie Yao
    Yingyi Zhang
    Mi Cao
    Liangliang Kong
    Chenqiang Jia
    Hui Yuan
    Hongyan Chen
    Daru Lu
    Qiang Huang
    Nature Communications, 8
  • [6] Structural insights into DNA cleavage activation of CRISPR-Cas9 system
    Huai, Cong
    Li, Gan
    Yao, Ruijie
    Zhang, Yingyi
    Cao, Mi
    Kong, Liangliang
    Jia, Chenqiang
    Yuan, Hui
    Chen, Hongyan
    Lu, Daru
    Huang, Qiang
    NATURE COMMUNICATIONS, 2017, 8
  • [7] Mapping the genomic landscape of CRISPR-Cas9 cleavage
    Cameron, Peter
    Fuller, Chris K.
    Donohoue, Paul D.
    Jones, Brittnee N.
    Thompson, Matthew S.
    Carter, Matthew M.
    Gradia, Scott
    Vidal, Bastien
    Garner, Elizabeth
    Slorach, Euan M.
    Lau, Elaine
    Banh, Lynda M.
    Lied, Alexandra M.
    Edwards, Leslie S.
    Settle, Alexander H.
    Capurso, Daniel
    Llaca, Victor
    Deschamps, Stephane
    Cigan, Mark
    Young, Joshua K.
    May, Andrew P.
    NATURE METHODS, 2017, 14 (06) : 600 - +
  • [8] Mapping the genomic landscape of CRISPR-Cas9 cleavage
    Cameron P.
    Fuller C.K.
    Donohoue P.D.
    Jones B.N.
    Thompson M.S.
    Carter M.M.
    Gradia S.
    Vidal B.
    Garner E.
    Slorach E.M.
    Lau E.
    Banh L.M.
    Lied A.M.
    Edwards L.S.
    Settle A.H.
    Capurso D.
    Llaca V.
    Deschamps S.
    Cigan M.
    Young J.K.
    May A.P.
    Nature Methods, 2017, 14 (6) : 600 - 606
  • [9] Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency
    Chung, Cheng-Han
    Allen, Alexander G.
    Sullivan, Neil T.
    Atkins, Andrew
    Nonnemacher, Michael R.
    Wigdahl, Brian
    Dampier, Will
    MOLECULAR THERAPY, 2020, 28 (01) : 19 - 28
  • [10] Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system
    Das, Jutan
    Kumar, Sanjeev
    Mishra, Dwijesh Chandra
    Chaturvedi, Krishna Kumar
    Paul, Ranjit Kumar
    Kairi, Amit
    FRONTIERS IN GENETICS, 2023, 13