Tetracycline (TC) was widely used and frequently detected in various water bodies, where the presence of TC posed a significant threat to the health of aquatic organisms. Furthermore, antibiotics were hardly degraded by biological treatment. Thus, in order to enhance the removal of TC, we proposed the use of a novel ultraviolet/ sodium percarbonate (UV/SPC) advanced oxidation process and initiated an in-depth study. The study investigated the influence of oxidant dosage, initial pH, UV intensity, and TC concentration on the removal of TC. The results demonstrated that the UV/SPC system efficiently removed TC, with removal efficiency increasing as the SPC concentration increased. Within the pH range of 3-11, TC degradation exhibited minimal variation, indicating the UV/SPC system's strong adaptability to pH variations. The research on the impact of the water matrix on TC removal revealed that HCO3- had an inhibitory effect on TC degradation, while NO3- promoted TC degradation. Additionally, the presence of free radical species (center dot OH, center dot CO3- , center dot O2- ) were detected and rate constants for the secondary reactions (k center dot OH,TC = 6.3 x 109 L mol- 1 center dot s- 1, k center dot CO3-,TC = 3.4 x 108 L mol- 1 center dot s- 1) were calculated, indicating that center dot OH exhibited a stronger oxidative performance compared to center dot CO3- . This study did not only present a novel strategy via UV/SPC to remove TC but also uncovered the unique role of center dot CO3- for contaminant removal.