Embedding knowledge graph of patent metadata to measure knowledge proximity

被引:2
|
作者
Li, Guangtong [1 ,2 ]
Siddharth, L. [1 ]
Luo, Jianxi [1 ]
机构
[1] Singapore Univ Technol & Design, Data Driven Innovat Lab, Engn Prod Dev Pillar, Singapore, Singapore
[2] Singapore Univ Technol & Design, Data Driven Innovat Lab, Engn Prod Dev Pillar, 8 Somapah Rd, Singapore 487372, Singapore
关键词
INNOVATION; DISTANCE; MAPS;
D O I
10.1002/asi.24736
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge proximity refers to the strength of association between any two entities in a structural form that embodies certain aspects of a knowledge base. In this work, we operationalize knowledge proximity within the context of the US Patent Database (knowledge base) using a knowledge graph (structural form) named "PatNet " built using patent metadata, including citations, inventors, assignees, and domain classifications. We train various graph embedding models using PatNet to obtain the embeddings of entities and relations. The cosine similarity between the corresponding (or transformed) embeddings of entities denotes the knowledge proximity between these. We compare the embedding models in terms of their performances in predicting target entities and explaining domain expansion profiles of inventors and assignees. We then apply the embeddings of the best-preferred model to associate homogeneous (e.g., patent-patent) and heterogeneous (e.g., inventor-assignee) pairs of entities.
引用
下载
收藏
页码:476 / 490
页数:15
相关论文
共 50 条
  • [1] Weighted Knowledge Graph Embedding
    Zhang, Zhao
    Guan, Zhanpeng
    Zhang, Fuwei
    Zhuang, Fuzhen
    An, Zhulin
    Wang, Fei
    Xu, Yongjun
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 867 - 877
  • [2] Knowledge Graph Embedding: An Overview
    Ge, Xiou
    Wang, Yun Cheng
    Wang, Bin
    Kuo, C. -C. Jay
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2024, 13 (01)
  • [3] Knowledge Graph Embedding Compression
    Sachan, Mrinmaya
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2681 - 2691
  • [4] Knowledge graph embedding with concepts
    Guan, Niannian
    Song, Dandan
    Liao, Lejian
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 38 - 44
  • [5] A type-augmented knowledge graph embedding framework for knowledge graph completion
    He, Peng
    Zhou, Gang
    Yao, Yao
    Wang, Zhe
    Yang, Hao
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [6] A type-augmented knowledge graph embedding framework for knowledge graph completion
    Peng He
    Gang Zhou
    Yao Yao
    Zhe Wang
    Hao Yang
    Scientific Reports, 13 (1)
  • [7] DockerPedia: A Knowledge Graph of Software Images and Their Metadata
    Osorio, Maximiliano
    Buil-Aranda, Carlos
    Santana-Perez, Idafen
    Garijo, Daniel
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2022, 32 (01) : 71 - 89
  • [8] Enhance Knowledge Graph Embedding by Mixup
    Xie, Tianyang
    Ge, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 569 - 580
  • [9] Knowledge graph embedding in a uniform space
    Tong, Da
    Chen, Shudong
    Ma, Rong
    Qi, Donglin
    Yu, Yong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (01) : 33 - 55
  • [10] Knowledge graph embedding with adaptive sampling
    Ouyang D.-T.
    Ma C.
    Lei J.-P.
    Feng S.-S.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (02): : 685 - 691