MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification
被引:4
|
作者:
Miao, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Miao, Yifan
[1
,2
,3
]
Jiang, Wanqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Jiang, Wanqing
[1
,2
,3
]
Su, Nuo
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Su, Nuo
[4
]
Shan, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Shan, Jun
[4
]
Jiang, Tianzi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Jiang, Tianzi
[1
,2
,3
]
Zuo, Nianming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
Zuo, Nianming
[1
,2
,3
]
机构:
[1] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R China
Electroencephalography;
Feature extraction;
Task analysis;
Support vector machines;
Recording;
Motion pictures;
Brain modeling;
EEG;
biometric;
across mental states;
across time;
deep learning;
domain adaptation;
BRAIN;
D O I:
10.1109/JBHI.2023.3315974
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches.
机构:
Univ Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo 101408, Zhejiang, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Li, Zhunan
论文数: 引用数:
h-index:
机构:
Zhu, Enwei
Jin, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo 101408, Zhejiang, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Jin, Ming
Fan, Cunhang
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Sch Comp Sci & Technol, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230093, Anhui, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Fan, Cunhang
He, Huiguang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100045, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
He, Huiguang
Cai, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo 101408, Zhejiang, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Cai, Ting
Li, Jinpeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo 101408, Zhejiang, Peoples R ChinaUniv Chinese Acad Sci, HwaMei Hosp, Ningbo 101408, Zhejiang, Peoples R China
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Yu, Peng
He, Xiaopeng
论文数: 0引用数: 0
h-index: 0
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
He, Xiaopeng
Li, Haoyu
论文数: 0引用数: 0
h-index: 0
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Li, Haoyu
Dou, Haowen
论文数: 0引用数: 0
h-index: 0
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Dou, Haowen
Tan, Yeyu
论文数: 0引用数: 0
h-index: 0
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Tan, Yeyu
Wu, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Xian Univ Technol, Sch Elect Engn, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Wu, Hao
Chen, Badong
论文数: 0引用数: 0
h-index: 0
机构:
Natl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China
Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R ChinaNatl Key Lab Human Machine Hybrid Augmented Intell, Xian, Peoples R China