Design and fabrication of high-performance 3D printed continuous flax fibre/PLA composites

被引:12
|
作者
Long, Yu [1 ]
Zhang, Zhongsen [1 ]
Fu, Kunkun [1 ]
Yang, Zhe [1 ]
Li, Yan [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; Continuous flax fibre reinforced composite; (CFFRC); Fibre volume fraction; Impregnation degree; Mechanical properties; CONTINUOUS CARBON-FIBER; MECHANICAL-PROPERTIES; REINFORCED COMPOSITES; FLEXURAL PROPERTIES; SURFACE-TREATMENTS; YARN; IMPREGNATION; BEHAVIOR; MANUFACTURE;
D O I
10.1016/j.jmapro.2023.05.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical properties of 3D-printed continuous plant fibre-reinforced poly(lactic) acid (PLA) composites are insufficient due to the low fibre volume fraction (-30 %). Further increase of fibre volume fraction of composites by reducing the line width may result in a composite with low fibre impregnation degree or the clogging of printer nozzle because of the twisted nature and uneven diameter of plant yarns, which also degrades the mechanical properties. This study proposed a method to obtain 3D printed continuous flax fibre reinforced composites (CFFRCs) with a high fibre volume fraction and excellent mechanical performance by statistical analysis of the dimensions of flax fibre yarns as well as surface modification. The CFFRCs were printed by a fibre prepregbased 3D printing method, and an in-situ impregnation method was also used to prepare CFFRCs for comparison. The results showed that the CFFRCs by the fibre prepreg method had a fibre volume fraction of 44.1 % and a void content of -1.9 % due to the high impregnation degree. Correspondingly, the tensile modulus and strength of the CFFRCs were the highest among the existing reported values of the composites made by 3D printing and even greater than those of the CFFRCs with a fibre volume fraction of -51.4 % prepared by the in-situ impregnation method.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 50 条
  • [1] Fabrication and Performance of Continuous 316 Stainless Steel Fibre-Reinforced 3D-Printed PLA Composites
    Clarke, Alison J.
    Dickson, Andrew
    Dowling, Denis P.
    POLYMERS, 2024, 16 (01)
  • [2] Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Yang, Chuncheng
    Wang, Qingrui
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 88 : 198 - 205
  • [3] Fabrication and Characterization of 3D Printed PLA
    Arora, Jassimran Kaur
    Bhati, Pooja
    PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35), 2020, 2205
  • [4] Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites
    Long, Yu
    Zhang, Zhongsen
    Fu, Kunkun
    Li, Yan
    COMPOSITES PART B-ENGINEERING, 2021, 227
  • [5] 3D printed continuous glass fibre-reinforced polyamide composites: Fabrication and mechanical characterisation
    Saidane, El Hadi
    Arnold, Gilles
    Louis, Pascal
    Pac, Marie-Jose
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2022, 41 (7-8) : 284 - 295
  • [6] The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) composites
    de Kergariou, Charles
    Saidani-Scott, Hind
    Perriman, Adam
    Scarpa, Fabrizio
    Le Duigou, Antoine
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 155
  • [7] The optimisation of flax fibre yarns for the development of high-performance natural fibre composites
    Goutianos, S
    Peijs, T
    ADVANCED COMPOSITES LETTERS, 2003, 12 (06) : 237 - 241
  • [8] Experimental and numerical evaluation of the influence of voids on sound absorption behaviors of 3D printed continuous flax fiber reinforced PLA composites
    Bi, Zhixiong
    Li, Qian
    Zhang, Zhen
    Zhang, Zhongsen
    Yang, Weidong
    Li, Yan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 255
  • [9] FIRE BEHAVIOUR OF 3D PRINTED PLA AND WOOD/PLA COMPOSITES
    Kuzman, Manja Kitek
    Kariz, Mirko
    Ayrilmis, Nadir
    Sernek, Milan
    Zigon, Jure
    Xu, Qiang
    DIGITALISATION AND CIRCULAR ECONOMY: FORESTRY AND FORESTRY BASED INDUSTRY IMPLICATIONS, 2019, : 149 - 154
  • [10] Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Wang, Qingrui
    Dilmurat, Abliz
    Li, Dichen
    Ziegmann, Gerhard
    JOURNAL OF CLEANER PRODUCTION, 2017, 142 : 1609 - 1618