Deep learning for head and neck semi-supervised semantic segmentation

被引:0
|
作者
Luan, Shunyao [1 ,2 ]
Ding, Yi [2 ]
Shao, Jiakang [1 ]
Zou, Bing [3 ]
Yu, Xiao [4 ]
Qin, Nannan [5 ]
Zhu, Benpeng [1 ]
Wei, Wei [2 ]
Xue, Xudong [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Lab Optoelect, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Canc Hosp, TongJi Med Coll, Dept Radiat Oncol, Wuhan, Hubei, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 2, Dept Oncol, Nanchang, Peoples R China
[4] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei, Peoples R China
[5] Bengbu Med Coll, Affiliated Hosp 1, Bengbu, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2024年 / 69卷 / 05期
关键词
radiation therapy; semi-supervised semantic segmentation; domain shift; confirmation bias; deep learning; ORGANS; RISK; IMAGES;
D O I
10.1088/1361-6560/ad25c2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Radiation therapy (RT) represents a prevalent therapeutic modality for head and neck (H&N) cancer. A crucial phase in RT planning involves the precise delineation of organs-at-risks (OARs), employing computed tomography (CT) scans. Nevertheless, the manual delineation of OARs is a labor-intensive process, necessitating individual scrutiny of each CT image slice, not to mention that a standard CT scan comprises hundreds of such slices. Furthermore, there is a significant domain shift between different institutions' H&N data, which makes traditional semi-supervised learning strategies susceptible to confirmation bias. Therefore, effectively using unlabeled datasets to support annotated datasets for model training has become a critical issue for preventing domain shift and confirmation bias. Approach. In this work, we proposed an innovative cross-domain orthogon-based-perspective consistency (CD-OPC) strategy within a two-branch collaborative training framework, which compels the two sub-networks to acquire valuable features from unrelated perspectives. More specifically, a novel generative pretext task cross-domain prediction (CDP) was designed for learning inherent properties of CT images. Then this prior knowledge was utilized to promote the independent learning of distinct features by the two sub-networks from identical inputs, thereby enhancing the perceptual capabilities of the sub-networks through orthogon-based pseudo-labeling knowledge transfer. Main results. Our CD-OPC model was trained on H&N datasets from nine different institutions, and validated on the four local intuitions' H&N datasets. Among all datasets CD-OPC achieved more advanced performance than other semi-supervised semantic segmentation algorithms. Significance. The CD-OPC method successfully mitigates domain shift and prevents network collapse. In addition, it enhances the network's perceptual abilities, and generates more reliable predictions, thereby further addressing the confirmation bias issue.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [2] ROBUST ADVERSARIAL LEARNING FOR SEMI-SUPERVISED SEMANTIC SEGMENTATION
    Zhang, Jia
    Li, Zhixin
    Zhang, Canlong
    Ma, Huifang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 728 - 732
  • [3] Semi-supervised Learning for Segmentation Under Semantic Constraint
    Ganaye, Pierre-Antoine
    Sdika, Michael
    Benoit-Cattin, Hugues
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 595 - 602
  • [4] Fuzzy Positive Learning for Semi-supervised Semantic Segmentation
    Qiao, Pengchong
    Wei, Zhidan
    Wang, Yu
    Wang, Zhennan
    Song, Guoli
    Xu, Fan
    Ji, Xiangyang
    Liu, Chang
    Chen, Jie
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15465 - 15474
  • [5] Semi-supervised Learning Methods for Semantic Segmentation of Polyps
    Ines, Adrian
    Dominguez, Cesar
    Heras, Jonathan
    Mata, Eloy
    Pascual, Vico
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 162 - 172
  • [6] Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
    Hong, Seunghoon
    Noh, Hyeonwoo
    Han, Bohyung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation
    Papandreou, George
    Chen, Liang-Chieh
    Murphy, Kevin P.
    Yuille, Alan L.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1742 - 1750
  • [8] Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
    Li, Linhui
    Zhang, Wenjun
    Zhang, Xiaoyan
    Emam, Mahmoud
    Jing, Weipeng
    [J]. ELECTRONICS, 2023, 12 (02)
  • [9] Transferable Semi-Supervised Semantic Segmentation
    Xiao, Huaxin
    Wei, Yunchao
    Liu, Yu
    Zhang, Maojun
    Feng, Jiashi
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7420 - 7427
  • [10] Universal Semi-Supervised Semantic Segmentation
    Kalluri, Tarun
    Varma, Girish
    Chandraker, Manmohan
    Jawahar, C. V.
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5258 - 5269