Efficient task scheduling on the cloud using artificial neural network and particle swarm optimization

被引:0
|
作者
Nayak, Pritam Kumar [1 ,3 ]
Singh, Ravi Shankar [1 ]
Kushwaha, Shweta [1 ]
Bevara, Prasanth Kumar [1 ]
Kumar, Vinod [1 ]
Medara, Rambabu [2 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, India
[2] Gandhi Inst Technol & Management, Dept Comp Sci & Engn, Visakhapatnam, India
[3] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi 221005, India
来源
基金
中国国家自然科学基金;
关键词
artificial neural network; cloud computing; machine learning; particle swarm optimization; task scheduling; ALGORITHM; LOAD;
D O I
10.1002/cpe.7954
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A difficult problem in the service-oriented computing paradigm is improving task scheduler policy or resource provisioning.In order to increase the performance of cloud applications, this article primarily focuses on tasks for resource mapping policy optimization. With the aim of reducing makespan and execution overhead and increasing the average resource utilization, we suggested an efficient independent task scheduler employing supervised neural networks in this paper. The suggested ANN-based scheduler uses the status of the cloud environment and incoming tasks as inputs to determine the optimal computing resource for a given assignment as a result that assembles our goal. We proposed a novel algorithm in this paper that uses a hybrid methodology based on a swarm intelligence algorithm (PSO) in combination with a machine learning technique (ANN). PSO is used to prepare the train and test dataset for the neural network. Results clearly state that suggested work achieves significant improvement to considered algorithms in makespan (45%-55%), average VM utilization (15%-20%), and execution overhead(20%-30%).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Efficient task scheduling on the cloud using artificial neural network and particle swarm optimization
    Nayak, Pritam Kumar
    Singh, Ravi Shankar
    Kushwaha, Shweta
    Bevara, Prasanth Kumar
    Kumar, Vinod
    Medara, Rambabu
    [J]. Concurrency and Computation: Practice and Experience, 2024, 36 (06)
  • [2] Efficient Task Scheduling in Cloud Computing using an Improved Particle Swarm Optimization Algorithm
    Peng, Guang
    Wolter, Katinka
    [J]. CLOSER: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2019, : 58 - 67
  • [3] Efficient Task Scheduling Multi-Objective Particle Swarm Optimization in Cloud Computing
    Alkayal, Entisar S.
    Jennings, Nicholas R.
    Abulkhair, Maysoon F.
    [J]. PROCEEDINGS OF THE 2016 IEEE 41ST CONFERENCE ON LOCAL COMPUTER NETWORKS - LCN WORKSHOPS 2016, 2016, : 17 - 24
  • [4] Internet of Things Task Scheduling in Cloud Environment using Particle Swarm Optimization
    Hasan, Mohammed Zaki
    Al-Rizzo, Hussain
    Al-Turiman, Fadi
    Rodriguez, Jonathan
    Radwan, Ayman
    [J]. 2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [5] Cloud Task Scheduling using Particle Swarm Optimization and Capuchin Search Algorithms
    Wang, Gang
    Feng, Jiayin
    Jia, Dongyan
    Song, Jinling
    LI, Guolin
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 1009 - 1017
  • [6] Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO)
    Alghamdi, Mohammed, I
    [J]. SUSTAINABILITY, 2022, 14 (19)
  • [7] Task scheduling in Internet of Things cloud environment using a robust particle swarm optimization
    Hasan, Mohammed Zaki
    Al-Rizzo, Hussain
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (02):
  • [8] Solving Task Scheduling Problem in the Cloud Using a Hybrid Particle Swarm Optimization Approach
    Cheikh, Salmi
    Walker, Jessie J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2022, 13 (01)
  • [9] Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling
    Abdolrasol, Maher G. M.
    Mohamed, Ramizi
    Hannan, M. A.
    Al-Shetwi, Ali Q.
    Mansor, M.
    Blaabjerg, Frede
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (11) : 12151 - 12157
  • [10] Cloud Task Scheduling Based on Chaotic Particle Swarm Optimization Algorithm
    Li Yingqiu
    Li Shuhua
    Gao Shoubo
    [J]. 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 493 - 496