ALGORITHMIC SUBSAMPLING UNDER MULTIWAY CLUSTERING

被引:0
|
作者
Chiang, Harold D. [1 ,3 ]
Li, Jiatong [2 ]
Sasaki, Yuya [2 ]
机构
[1] Univ Wisconsin, Madison, WI USA
[2] Vanderbilt Univ, Nashville, TN USA
[3] Univ Wisconsin, Dept Econ, Madison, WI 53706 USA
关键词
D O I
10.1017/S0266466623000166
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a novel method of algorithmic subsampling (data sketching) for multiway cluster-dependent data. We establish a new uniform weak law of large numbers and a new central limit theorem for multiway algorithmic subsample means. We show that algorithmic subsampling allows for robustness against potential degeneracy, and even non-Gaussian degeneracy, of the asymptotic distribution under multiway clustering at the cost of efficiency and power loss due to algorithmic subsampling. Simulation studies support this novel result, and demonstrate that inference with algorithmic subsampling entails more accuracy than that without algorithmic subsampling. We derive the consistency and the asymptotic normality for multiway algorithmic subsampling generalized method of moments estimator and for multiway algorithmic subsampling M-estimator. We illustrate with an application to scanner data for the analysis of differentiated products markets.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] An Econometric Perspective on Algorithmic Subsampling
    Lee, Sokbae
    Ng, Serena
    [J]. ANNUAL REVIEW OF ECONOMICS, VOL 12, 2020, 12 : 45 - 80
  • [2] Multiway clustering in tourism research
    Boto-Garcia, David
    [J]. CURRENT ISSUES IN TOURISM, 2022, 25 (03) : 363 - 378
  • [3] Robust Inference With Multiway Clustering
    Cameron, A. Colin
    Gelbach, Jonah B.
    Miller, Douglas L.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (02) : 238 - 249
  • [4] Algorithmic clustering of music
    Cilibrasi, R
    Vitányi, P
    de Wolf, R
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON WEB DELIVERING OF MUSIC, 2004, : 110 - 117
  • [5] Multiway clustering for creating biomedical term sets
    Kandylas, Vasileios
    Ungar, Lyle
    Sandler, Ted
    Jensen, Shane
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 449 - +
  • [6] Multiway clustering with time-varying parameters
    Roy Cerqueti
    Raffaele Mattera
    Germana Scepi
    [J]. Computational Statistics, 2024, 39 : 51 - 92
  • [7] A multiway p-spectral clustering algorithm
    Ding, Shifei
    Cong, Lin
    Hu, Qiankun
    Jia, Hongjie
    Shi, Zhongzhi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 371 - 377
  • [8] Multiway clustering with time-varying parameters
    Cerqueti, Roy
    Mattera, Raffaele
    Scepi, Germana
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (01) : 51 - 92
  • [9] Wild Bootstrap and Asymptotic Inference With Multiway Clustering
    MacKinnon, James G.
    Nielsen, Morten Orregaard
    Webb, Matthew D.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (02) : 505 - 519
  • [10] Multiway clustering via tensor block models
    Wang, Miaoyan
    Zeng, Yuchen
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32