Noble Metal Single-Atom Coordinated to Nitrogen, Oxygen, and Carbon as Electrocatalysts for Oxygen Evolution

被引:2
|
作者
Wang, Jianhua [1 ]
Bai, Jiangdong [1 ]
Cang, Yaqi [1 ]
Li, Qing [1 ]
Fan, Xing [2 ]
Lin, Haiping [1 ]
机构
[1] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
[2] Peking Univ, Res Ctr Carbon Based Elect, Sch Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
关键词
noble metal single-atom catalysts; structure-activity relationship; density functional theory; oxygen evolution reaction; theoretical descriptor; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; REDUCTION REACTION; CATALYSTS; SITES; WATER; PERFORMANCE; EFFICIENCY; OXIDATION; EXCHANGE;
D O I
10.3390/catal13101378
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tuning the coordination environment centering metal atoms has been regarded as a promising strategy to promote the activities of noble metal single-atom catalysts (SACs). In the present work, first-principle calculations are employed to explore the oxygen evolution reaction (OER) performance of Ir and Ru SACs with chemical coordination being nitrogen (M-N-4-C), oxygen (M-O-4-C), and carbon (M-C-4-C) in graphene, respectively. A "three-step" strategy was implemented by progressively investigating these metrics (stability, catalytic activity, structure-activity relationship). A volcano plot of reactivity is established by using the adsorption-free energy of O* (triangle G(O*)) as a theoretical descriptor. The intrinsic OER activity is IrN4-C > IrO4-C > RuO4-C > RuN4-C > IrC4-C > RuC4-C. The in-depth tuning mechanism of triangle G(O*) can be indicated and interpreted by the d-band centers of the active sites and the crystal orbital Hamilton population analysis of metal-oxygen bonds, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Recent progress of noble metal-based single-atom electrocatalysts for acidic oxygen evolution reaction
    Song, Ruochen
    Wang, Xian
    Ge, Junjie
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 42
  • [2] Noble-Metal-Free Electrocatalysts for Oxygen Evolution
    Lyu, Fenglei
    Wang, Qingfa
    Choi, Sung Mook
    Yin, Yadong
    SMALL, 2019, 15 (01)
  • [3] Tuning Single-Atom Catalysts of Nitrogen-Coordinated Transition Metals for Optimizing Oxygen Evolution and Reduction Reactions
    Hu, Mingyu
    Li, Shunning
    Zheng, Shisheng
    Liang, Xianhui
    Zheng, Jiaxin
    Pan, Feng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (24): : 13168 - 13176
  • [4] Race on engineering noble metal single-atom electrocatalysts for water splitting
    Xu, Hui
    Zhao, Yitao
    He, Guangyu
    Chen, Haiqun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (31) : 14257 - 14279
  • [5] Construction of hierarchically porous carbon spheres supported nonprecious metal single-atom electrocatalysts for oxygen reduction reaction
    Song, Yi
    Li, Wei
    Ma, Yanan
    Tang, Shaoru
    Wang, Haimeng
    Wang, Qian
    JOURNAL OF POWER SOURCES, 2022, 545
  • [6] Fullerene as a probe molecule for single-atom oxygen reduction electrocatalysts
    Li, Ning
    Guo, Kun
    Lu, Song
    Bao, Lipiao
    Yu, Zhixin
    Lu, Xing
    CHEMICAL COMMUNICATIONS, 2024, 60 (83) : 11964 - 11967
  • [7] Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction
    Han, Junxing
    Bian, Juanjuan
    Sun, Chunwen
    RESEARCH, 2020, 2020
  • [8] Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes
    Shi, Haodong
    Li, Yaguang
    Lu, Pengfei
    Wu, Zhong-Shuai
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [9] Review of single-atom electrocatalysts for hydrogen and oxygen evolution reactions from water-splitting
    Shoaib, Muhammad
    Naz, Muhammad Yasin
    Wu, Tong
    Rehman, Hafeez Ur
    Sun, Enqi
    Li, Aiping
    Zhu, Qiliang
    Wang, Ning
    FUEL, 2025, 390
  • [10] Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction
    Peng, Rui-Li
    Li, Jia-Luo
    Wang, Xiao-Ning
    Zhao, Yu-Meng
    Li, Bao
    Xia, Bao Yu
    Zhou, Hong-Cai
    INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (23): : 4661 - 4668