QTL Mapping for Seed Quality Traits under Multiple Environments in Soybean (Glycine max L.)

被引:4
|
作者
Liu, Jiaqi [1 ]
Jiang, Aohua [1 ]
Ma, Ronghan [1 ]
Gao, Weiran [1 ]
Tan, Pingting [1 ]
Li, Xi [1 ]
Du, Chengzhang [2 ]
Zhang, Jijun [2 ]
Zhang, Xiaochun [2 ]
Zhang, Li [3 ]
Fang, Xiaomei [1 ]
Yi, Zelin [1 ]
Zhang, Jian [1 ]
机构
[1] Southwest Univ, Coll Agron & Biotechnol, Chongqing 400715, Peoples R China
[2] Chongqing Acad Agr Sci, Inst Specialty Crop, Chongqing 402160, Peoples R China
[3] Chongqing Three Gorges Acad Agr Sci, Chongqing 404100, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 09期
关键词
soybean; protein; oil; fatty acid; QTL (quantitative trait loci); candidate gene; FATTY-ACID-COMPOSITION; SOY PROTEIN; YIELD; ASSOCIATION; SOFTWARE; PROGRESS; MARKERS;
D O I
10.3390/agronomy13092382
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soybeans are the main source of vegetable protein and edible oil for humans, with an average content of about 40% crude protein and 20% crude fat. Soybean quality traits are mostly quantitative traits controlled by multiple genes. The quantitative trait loci (QTL) for soybean quality traits and mining related candidate genes are of great significance for the molecular breeding of soybean quality traits and understanding the genetic mechanism of protein/fat metabolism. In this study, the F-2 population was derived from the high-protein material Changjiang Chun 2 and Jiyu 166. On the basis of a genetic linkage map constructed in our previous study, the QTL of crude protein content, crude oil content and fatty acid fractions were detected using the multiple-QTL model (MQM) mapping method. The results show that a total of 92 QTL were obtained affecting quality traits under three environments, including 14 QTL of crude oil content, 9 QTL of crude protein content, and 20, 20, 11, 10 and 8 QTL for the content of palmitic, stearic, oleic, linoleic and linolenic acids, respectively. Sixteen QTL clusters were identified, among which Loci01.1, Loci06.1 and Loci11.1 were identified as stable QTL clusters with phenotypic contribution rates of 16.5%, 16.4% and 12.1%, respectively, and candidate genes were mined in their regions. A total of 32 candidate genes related to soybean quality were finally screened via GO enrichment and gene annotation. The present study lies the foundations for understanding the genetic mechanism and elite germplasm innovation of seed quality in soybean.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Construction of Genetic Map and QTL Mapping for Seed Size and Quality Traits in Soybean (Glycine max L.)
    Gao, Weiran
    Ma, Ronghan
    Li, Xi
    Liu, Jiaqi
    Jiang, Aohua
    Tan, Pingting
    Xiong, Guoxi
    Du, Chengzhang
    Zhang, Jijun
    Zhang, Xiaochun
    Fang, Xiaomei
    Yi, Zelin
    Zhang, Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (05)
  • [2] Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr.]
    Akond, Masum
    Yuan, Jiazheng
    Liu, Shiming
    Kantartzi, Stella K.
    Meksem, Khalid
    Bellaloui, Nacer
    Lightfoot, David A.
    Kassem, My Abdelmajid
    CANADIAN JOURNAL OF PLANT SCIENCE, 2018, 98 (04) : 881 - 888
  • [3] Mapping QTL affecting the vertical distribution and seed set of soybean [Glycine max (L.) Merr.] pods
    Liu, Shiping
    Xue, Hong
    Zhang, Kaixin
    Wang, Ping
    Su, Daiqun
    Li, Wenbin
    Xu, Shichao
    Zhang, Jianan
    Qi, Zhongying
    Fang, Yanlong
    Li, Xiyu
    Wang, Yue
    Tian, Xiaocui
    Song, Jie
    Wang, Jiajing
    Yang, Chang
    Jiang, Sitong
    Li, Wen-Xia
    Ning, Hailong
    CROP JOURNAL, 2019, 7 (05): : 694 - 706
  • [4] Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)
    Yu Xu
    He-Nan Li
    Guang-Jun Li
    Xia Wang
    Li-Guo Cheng
    Yuan-Ming Zhang
    Theoretical and Applied Genetics, 2011, 122 : 581 - 594
  • [5] Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)
    Xu, Yu
    Li, He-Nan
    Li, Guang-Jun
    Wang, Xia
    Cheng, Li-Guo
    Zhang, Yuan-Ming
    THEORETICAL AND APPLIED GENETICS, 2011, 122 (03) : 581 - 594
  • [6] Mapping QTL affecting the vertical distribution and seed set of soybean [Glycine max(L.) Merr.] pods
    Shiping Liu
    Hong Xue
    Kaixin Zhang
    Ping Wang
    Daiqun Su
    Wenbin Li
    Shichao Xu
    Jianan Zhang
    Zhongying Qi
    Yanlong Fang
    Xiyu Li
    Yue Wang
    Xiaocui Tian
    Jie Song
    Jiajing Wang
    Chang Yang
    Sitong Jiang
    Wen-Xia Li
    Hailong Ning
    The Crop Journal, 2019, 7 (05) : 694 - 706
  • [7] QTL mapping of domestication-related traits in soybean (Glycine max)
    Liu, Baohui
    Fujita, Toshiro
    Yan, Ze-Hong
    Sakamoto, Shinichi
    Xu, Donghe
    Abe, Jun
    ANNALS OF BOTANY, 2007, 100 (05) : 1027 - 1038
  • [8] Genetic loci and responsible genes for pod and seed traits under diverse environments via linkage mapping analysis in soybean [Glycine max (L.) Merr.]
    Shiliang Chen
    Yaqian Sun
    Zhenqi Shao
    Jiahao Chu
    Wenlong Li
    Youbin Kong
    Hui Du
    Xihuan Li
    Caiying Zhang
    Genetic Resources and Crop Evolution, 2022, 69 : 1089 - 1105
  • [9] Genetic loci and responsible genes for pod and seed traits under diverse environments via linkage mapping analysis in soybean [Glycine max (L.) Merr.]
    Chen, Shiliang
    Sun, Yaqian
    Shao, Zhenqi
    Chu, Jiahao
    Li, Wenlong
    Kong, Youbin
    Du, Hui
    Li, Xihuan
    Zhang, Caiying
    GENETIC RESOURCES AND CROP EVOLUTION, 2022, 69 (03) : 1089 - 1105
  • [10] QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.)
    Li, YD
    Wang, YJ
    Tong, YP
    Gao, JG
    Zhang, JS
    Chen, SY
    EUPHYTICA, 2005, 142 (1-2) : 137 - 142