FIXED POINT PROPERTY OF FULL HILBERTC∗-MODULES OVER UNITAL C∗-ALGEBRAS

被引:0
|
作者
Jahangir, Farhang [1 ]
Nourouzi, Kourosh [1 ]
机构
[1] KN Toosi Univ Technol, Fac Math, Tehran, Iran
来源
FIXED POINT THEORY | 2024年 / 25卷 / 01期
关键词
Fixed point; nonexpansive mapping; Hilbert C*-module; continuousfield of Hilbert spaces; unit vector; VECTORS;
D O I
10.24193/fpt-ro.2025.1.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that full Hilbert C*-modules over a commutative unital C*-algebraAhave fixedpoint property for nonexpansive mappings if and only ifAis finite dimensional. We also show thatthe same is true for every Hilbert C*-module with unit vectors over an arbitrary unital C*-algebra.In particular, a classification of full Hilbert C*-modules with unit vectors over unital C*-algebras isgiven via fixed point property for nonexpansive mappings.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [1] The Fixed Point Property of Unital Abelian Banach Algebras
    Fupinwong, W.
    Dhompongsa, S.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [2] The Fixed Point Property of Unital Abelian Banach Algebras
    W Fupinwong
    S Dhompongsa
    [J]. Fixed Point Theory and Applications, 2010
  • [3] Fixed point property of Hilbert modules over finite dimensional C-algebras
    Golabi, Mehrdad
    Nourouzi, Kourosh
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (03)
  • [4] ALMOST HOMOMORPHISMS BETWEEN UNITAL C*-ALGEBRAS:A FIXED POINT APPROACH
    M.Eshaghi Gordji
    S.Kaboli Gharetapeh
    M.Bidkham
    T.Karimi
    M.Aghaei
    [J]. Analysis in Theory and Applications, 2011, 27 (04) : 320 - 331
  • [5] JORDAN *-HOMOMORPHISMS BETWEEN UNITAL C*-ALGEBRAS: A FIXED POINT APPROACH
    Gordji, M. Eshaghi
    [J]. FIXED POINT THEORY, 2011, 12 (02): : 341 - 348
  • [6] A Fixed Point Technique for Approximate a Functional Inequality in Normed Modules over C*-algebras
    Cho, Yeol Je
    Saadati, Reza
    Yang, Young-Oh
    Kenari, H. M.
    [J]. FILOMAT, 2016, 30 (07) : 1691 - 1696
  • [7] On the Fixed-Point Property of Unital Uniformly Closed Subalgebras of C(X)
    Alimohammadi, Davood
    Moradi, Sirous
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [8] SEPARABLE C*-ALGEBRAS AND WEAK* FIXED POINT PROPERTY
    Fendler, Gero
    Leinert, Michael
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (02): : 233 - 241
  • [9] Property (T) and strong property (T) for unital C*-algebras
    Leung, Chi-Wai
    Ng, Chi-Keung
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) : 3055 - 3070
  • [10] Property (T) for non-unital C*-algebras
    Leung, Chi-Wai
    Ng, Chi-Keung
    Wong, Ngai-Ching
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1102 - 1106