Gradient Estimations for Nonlinear Elliptic Equations on Weighted Riemannian Manifolds

被引:1
|
作者
Hui, Shyamal Kumar [1 ]
Abolarinwa, Abimbola [2 ]
Bhattacharyya, Sujit [1 ]
机构
[1] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
[2] Univ Lagos, Dept Math, Akoka, Lagos State, Nigeria
关键词
gradient estimate; weighted Laplacian; elliptic equation; Liouville theorem;
D O I
10.1134/S1995080223040121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we derive local gradient estimates for positive solutions of a generalized nonlinear weighted elliptic equation Delta(phi)u + au(p)(ln u)(q) + bu(r) = 0, where a, b, p, q, r are real constants, under the lower bound assumption on Bakry-E ' mery Ricci tensor on a complete weighted Riemannian manifold without imposing bounds on |del phi|. As applications we provide global gradient estimate for the same equation and establish Liouville type theorems.
引用
收藏
页码:1341 / 1349
页数:9
相关论文
共 50 条