Cumulative unsupervised multi-domain adaptation for Holstein cattle re-identification

被引:2
|
作者
Dubourvieux, Fabian [1 ,2 ]
Lapouge, Guillaume [1 ]
Loesch, Angelique [1 ]
Luvison, Bertrand [1 ]
Audigier, Romaric [1 ]
机构
[1] Univ Paris Saclay, CEA List, F-91120 Palaiseau, France
[2] Normandie Univ, INSA Rouen, LITIS, F-76801 St Etienne Du Rouvray, France
来源
关键词
Re-identification; Domain adaptation; Holstein cattle; Unsupervised learning; Monitoring; DOMAIN ADAPTATION;
D O I
10.1016/j.aiia.2023.10.002
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In dairy farming, ensuring the health of each cow and minimizing economic losses requires individual monitoring, achieved through cow Re-Identification (Re-ID). Computer vision-based Re-ID relies on visually dis-tinguishing features, such as the distinctive coat patterns of breeds like Holstein. However, annotating every cow in each farm is cost-prohibitive. Our objective is to develop Re-ID methods applicable to both labeled and unlabeled farms, accommodating new individuals and diverse environments. Un-supervised Domain Adaptation (UDA) techniques bridge this gap, transferring knowledge from labeled source domains to unlabeled target domains, but have only been mainly designed for pedestrian and vehicle Re-ID applications.Our work introduces Cumulative Unsupervised Multi-Domain Adaptation (CUMDA) to address challenges of lim-ited identity diversity and diverse farm appearances. CUMDA accumulates knowledge from all domains, enhanc-ing specialization in known domains and improving generalization to unseen domains. Our contributions include a CUMDA method adapting to multiple unlabeled target domains while preserving source domain performance, along with extensive cross-dataset experiments on three cattle Re-ID datasets. These experiments demonstrate significant enhancements in source preservation, target domain specialization, and generalization to unseen domains.(c) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:46 / 60
页数:15
相关论文
共 50 条
  • [1] Unsupervised person re-identification via multi-domain joint learning
    Chen, Feng
    Wang, Nian
    Tang, Jun
    Yan, Pu
    Yu, Jun
    PATTERN RECOGNITION, 2023, 138
  • [2] Unsupervised Multi-Source Domain Adaptation for Person Re-Identification
    Bai, Zechen
    Wang, Zhigang
    Wang, Jian
    Hu, Di
    Ding, Errui
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12909 - 12918
  • [3] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [4] Domain-Camera Adaptation for Unsupervised Person Re-Identification
    Tian, Jiajie
    Teng, Zhu
    Li, Yan
    Li, Rui
    Wu, Yi
    Fan, Jianping
    2019 6TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC AND SOCIO-CULTURAL COMPUTING (BESC 2019), 2019,
  • [5] Mutual purification for unsupervised domain adaptation in person re-identification
    Lei Zhang
    Qishuai Diao
    Na Jiang
    Zhong Zhou
    Wei Wu
    Neural Computing and Applications, 2022, 34 : 16929 - 16944
  • [6] Representation strategy for unsupervised domain adaptation on person re-identification
    Li, Hao
    Zhang, Tao
    Li, Shuang
    Li, Xuan
    Zhao, Xin
    OPTOELECTRONICS LETTERS, 2024, 20 (12) : 749 - 756
  • [7] Mutual purification for unsupervised domain adaptation in person re-identification
    Zhang, Lei
    Diao, Qishuai
    Jiang, Na
    Zhou, Zhong
    Wu, Wei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16929 - 16944
  • [8] UNSUPERVISED DOMAIN ADAPTATION THROUGH SYNTHESIS FOR PERSON RE-IDENTIFICATION
    Xiang, Suncheng
    Fu, Yuzhuo
    You, Guanjie
    Liu, Ting
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [9] Representation strategy for unsupervised domain adaptation on person re-identification
    LI Hao
    ZHANG Tao
    LI Shuang
    LI Xuan
    ZHAO Xin
    Optoelectronics Letters, 2024, 20 (12) : 749 - 756
  • [10] Domain Adaptation Through Synthesis for Unsupervised Person Re-identification
    Bak, Slawomir
    Carr, Peter
    Lalonde, Jean-Francois
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 193 - 209