Parameter identification of permanent magnet synchronous motor based on modified- fuzzy particle swarm optimization

被引:9
|
作者
Zhou, Shuai [1 ]
Wang, Dazhi [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
Permanent magnet synchronous motor; Online parameter identification; Modified-fuzzy particle swarm algorithm(MDFPSO);
D O I
10.1016/j.egyr.2022.11.124
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimation of PMSM parameters is beneficial to the high performance operation of PMSM. In order to prevent PSO from falling into the local optimal solution in the PMSM parameter identification process, so as to improve the accuracy of identification results, a modified fuzzy particle swarm optimization (MDFPSO) is proposed, which changes the speed of each particle from only affected by the optimal particle to affected by the surrounding particles, This improvement guarantees the identification accuracy of the algorithm, and introduce the convergence factor to ensure that the MDFPSO can converge. Simulation results show that the MDFPSO algorithm is effective in PMSM parameter identification. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:873 / 879
页数:7
相关论文
共 50 条
  • [1] Parameter identification of permanent magnet synchronous motor based on modified- fuzzy particle swarm optimization
    Zhou, Shuai
    Wang, Dazhi
    Li, Ye
    ENERGY REPORTS, 2023, 9 : 873 - 879
  • [2] Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor
    Zhou, Shuai
    Wang, Dazhi
    Ni, Yongliang
    Song, Keling
    Li, Yanming
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2187 - 2207
  • [3] Multi-parameter identification of permanent magnet synchronous motor based on improved particle swarm optimization
    Liu X.-P.
    Hu W.-P.
    Zou Y.-L.
    Zhang Y.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2020, 24 (07): : 112 - 120
  • [4] Sensorless fuzzy control algorithm for permanent magnet synchronous motor based on particle swarm optimization parameter identification and harmonic extraction
    Zhang, Kai
    Qing, Lu
    Liu, Gai
    Quan, Li
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2024, 38 (08) : 877 - 897
  • [5] Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors
    Liu, Li
    Liu, Wenxin
    Cartes, David A.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (07) : 1092 - 1100
  • [6] Fast Backfire Double Annealing Particle Swarm Optimization Algorithm for Parameter Identification of Permanent Magnet Synchronous Motor
    Wen, Dingdou
    Shi, Chuandong
    Liao, Kaixian
    Liu, Jianhua
    Zhang, Yang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2021, 104 : 23 - 38
  • [7] Fast backfire double annealing particle swarm optimization algorithm for parameter identification of permanent magnet synchronous motor
    Wen, Dingdou
    Shi, Chuandong
    Liao, Kaixian
    Liu, Jianhua
    Zhang, Yang
    Progress In Electromagnetics Research M, 2021, 104 : 23 - 38
  • [8] Online Parameter Identification of Permanent Magnet Synchronous Motor Based on Fast Particle Swarm Optimization Algorithm with Effective Information Iterated
    Li J.
    Yang S.
    Xie Z.
    Zhang X.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (18): : 4604 - 4613
  • [9] Parameter Identification of a Permanent Magnet Synchronous Machine based on Current Decay Test and Particle Swarm Optimization
    Perez, J. N. H.
    Hernandez, O. S.
    Caporal, R. M.
    Magdaleno, J. de J. R.
    Barreto, H. P.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1176 - 1181