Longer Gaps Between Values of Binary Quadratic Forms

被引:4
|
作者
Dietmann, Rainer [1 ]
Elsholtz, Christian [2 ]
Kalmynin, Alexander [3 ]
Konyagin, Sergei [4 ]
Maynard, James [5 ]
机构
[1] Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, England
[2] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
[3] Natl Res Univ Higher Sch Econ, 6 Usacheva Str, Moscow 119048, Russia
[4] Steklov Inst Math, 8 Gubkin Str, Moscow 119991, Russia
[5] Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
SUMS; NUMBERS;
D O I
10.1093/imrn/rnac130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new lower bounds on large gaps between integers that are sums of two squares or are represented by any binary quadratic form of discriminant D, improving the results of Richards. Let s1, s2, . . . be the sequence of positive integers, arranged in increasing order, that are representable by any binary quadratic form of fixed discriminant D, then (Formula presented) improving a lower bound of 1/ |D | of Richards. In the special case of sums of two squares, we improve Richards’s bound of 1/4 to 390/449 = 0.868 . . .. We also generalize Richards’s result in another direction: if d is composite we show that there exist constants Cd such that for all integer values of x none of the values pd(x) = Cd+xd is a sum of two squares. Let d be a prime. For all k ∈ N, there exists a smallest positive integer yk such that none of the integers yk + jd, 1 ≤ j ≤ k, is a sum of two squares. Moreover, (Formula presented) © The Author(s) 2022. Published by Oxford University Press. All rights reserved.
引用
收藏
页码:10313 / 10349
页数:37
相关论文
共 50 条
  • [1] ON THE GAPS BETWEEN VALUES OF BINARY QUADRATIC FORMS
    Bruedern, Joerg
    Dietmann, Rainer
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 25 - 32
  • [2] GAPS BETWEEN VALUES OF QUADRATIC POLYNOMIALS
    JACKSON, TH
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (JAN): : 47 - &
  • [3] On values of binary quadratic forms at integer points
    Choudhuri, Manoj
    Dani, S. G.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2015, 22 (04) : 1023 - 1045
  • [4] Small values of indefinite binary quadratic forms
    Flahive, ME
    Woods, AC
    [J]. ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 397 - 409
  • [5] On prime values of binary quadratic forms with a thin variable
    Lam, Peter Cho-Ho
    Schindler, Damaris
    Xiao, Stanley Yao
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (02): : 749 - 772
  • [6] Growth of values of binary quadratic forms and Conway rivers
    Spalding, K.
    Veselov, A. P.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (03) : 513 - 528
  • [7] SMALL POSITIVE VALUES OF INDEFINITE BINARY QUADRATIC FORMS
    JACKSON, TH
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (172P): : 730 - &
  • [8] Odd values of partition functions related to binary quadratic forms
    Chen, Shi-Chao
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (02) : 237 - 246
  • [9] Values of binary quadratic forms at integer points and Schmidt games
    Kleinbock, Dmitry
    Weiss, Barak
    [J]. RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 77 - 92
  • [10] CONTINUED FRACTIONS FOR COMPLEX NUMBERS AND VALUES OF BINARY QUADRATIC FORMS
    Dani, S. G.
    Nogueira, Arnaldo
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) : 3553 - 3583