IoT Federated Blockchain Learning at the Edge

被引:0
|
作者
Calo, James [1 ]
Lo, Benny [2 ]
机构
[1] Imperial Coll London, Hamyln Ctr, Dept Comp, London, England
[2] Imperial Coll London, Hamyln Ctr, Dept Surg & Canc, London, England
关键词
D O I
10.1109/EMBC40787.2023.10339946
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
IoT devices are sorely underutilized in the medical field, especially within machine learning for medicine, yet they offer unrivaled benefits. IoT devices are low cost, energy efficient, small and intelligent devices [1]. In this paper, we propose a distributed federated learning framework for IoT devices, more specifically for IoMT (Internet of Medical Things), using blockchain to allow for a decentralized scheme improving privacy and efficiency over a centralized system; this allows us to move from the cloud based architectures, that are prevalent, to the edge. The system is designed for three paradigms: 1) Training neural networks on IoT devices to allow for collaborative training of a shared model whilst decoupling the learning from the dataset [2] to ensure privacy [3]. Training is performed in an online manner simultaneously amongst all participants, allowing for training of actual data that may not have been present in a dataset collected in the traditional way and dynamically adapt the system whilst it is being trained. 2) Training of an IoMT system in a fully private manner such as to mitigate the issue with confidentiality of medical data and to build robust, and potentially bespoke [4], models where not much, if any, data exists. 3) Distribution of the actual network training, something federated learning itself does not do, to allow hospitals, for example, to utilize their spare computing resources to train network models.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Federated Blockchain Learning at the Edge
    Calo, James
    Lo, Benny
    INFORMATION, 2023, 14 (06)
  • [2] Blockchain-enabled Efficient and Secure Federated Learning in IoT and Edge Computing Networks
    Al Mallah, Ranwa
    Lopez, David
    Halabi, Talal
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 511 - 515
  • [3] Blockchain managed federated learning for a secure IoT framework
    Chai, Jiayong
    Li, Jian
    Wei, Muhua
    Zhu, Chuangying
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [4] IoT Data Security: An Integration of Blockchain and Federated Learning
    Shubham, Gagandeep
    Agarwal, Vidushi
    Pal, Sujata
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 434 - 439
  • [5] Joining Federated Learning to Blockchain for Digital Forensics in IoT
    Almutairi, Wejdan
    Moulahi, Tarek
    COMPUTERS, 2023, 12 (08)
  • [6] Federated Learning Protocols for IoT Edge Computing
    Foukalas, Fotis
    Tziouvaras, Athanasios
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 13570 - 13581
  • [7] Federated Learning Game in IoT Edge Computing
    Durand, Stephane
    Khawam, Kinda
    Quadri, Dominique
    Lahoud, Samer
    Martin, Steven
    IEEE ACCESS, 2024, 12 : 93060 - 93074
  • [8] Orchestrating Blockchain with Decentralized Federated Learning in Edge Networks
    Jin, Yibo
    Jiao, Lei
    Qian, Zhuzhong
    Zhou, Ruiting
    Pu, Lingjun
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [9] Toward Secure and Private Federated Learning for IoT using Blockchain
    Moudoud, Hajar
    Cherkaoui, Soumaya
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4316 - 4321
  • [10] Blockchain and Federated Deep Reinforcement Learning Based Secure Cloud-Edge-End Collaboration in Power IoT
    Zhang, Sunxuan
    Wang, Zhao
    Zhou, Zhenyu
    Wang, Yang
    Zhang, Hui
    Zhang, Geng
    Ding, Huixia
    Mumtaz, Shahid
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (02) : 84 - 91