Secure Federated Learning: An Evaluation of Homomorphic Encrypted Network Traffic Prediction

被引:12
|
作者
Sanon, Sogo Pierre [1 ]
Reddy, Rekha [1 ]
Lipps, Christoph [1 ]
Schotten, Hans Dieter [1 ,2 ]
机构
[1] German Res Ctr Artificial Intelligence, Intelligent Networks Res Grp, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Inst Wireless Commun & Nav, D-67663 Kaiserslautern, Germany
关键词
Federated Learning; Homomorphic Encryption; Secure Multi-Party computation;
D O I
10.1109/CCNC51644.2023.10060116
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing level of connectivity to the internet, especially wireless system, network traffic monitoring has become an active field of research. Network traffic analysis has many applications, including in resource allocation or management. However, the growing concern regarding privacy makes it difficult for different entities to share network traffic information. Federated learning and homomorphic encryption have been proposed in previous research as a solution to a secure collaborative analysis, but the practicality as well as a thorough evaluation of the approach have to be explored. This article aims to provide a practical study that could be implemented in real life. Aspects like secure multi-party computation are investigated, which allows organization to use different private keys. In addition, data used for the evaluation are generated in totally different environments. These new features are considered since in practice, companies will not use the same private keys and also network traffic data often come from different type of companies. A detailed evaluation of the approach is also presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Federated Learning for Network Traffic Prediction
    Behera, Sadananda
    Panda, Saroj Kumar
    Panayiotou, Tania
    Ellinas, Georgios
    2024 23RD IFIP NETWORKING CONFERENCE, IFIP NETWORKING 2024, 2024, : 781 - 785
  • [2] Secure Federated Distillation Framework for Encrypted Traffic Classification
    Teng, Long
    Feng, Qi
    Zhao, Wei
    Luo, Min
    He, Debiao
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2024, 2025, 15053 : 1 - 19
  • [3] Secure Evaluation of Discrete Sine Transform in Homomorphic Encrypted Domain
    Zeng, Huicong
    Cai, Zhiwei
    Zheng, Peijia
    Liu, Hongmei
    Luo, Weiqin
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT II, 2022, 13339 : 513 - 525
  • [4] FedETC: Encrypted traffic classification based on federated learning
    Jin, Zhiping
    Duan, Ke
    Chen, Changhui
    He, Meirong
    Jiang, Shan
    Xue, Hanxiao
    HELIYON, 2024, 10 (16)
  • [5] Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption
    Stripelis, Dimitris
    Saleem, Hamza
    Ghai, Tanmay
    Dhinagar, Nikhil J.
    Gupta, Umang
    Anastasiou, Chrysovalantis
    Ver Steeg, Greg
    Ravi, Srivatsan
    Naveed, Muhammad
    Thompson, Paul M.
    Ambite, Jose Luis
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [6] Secure Federated Learning With Fully Homomorphic Encryption for IoT Communications
    Hijazi, Neveen Mohammad
    Aloqaily, Moayad
    Guizani, Mohsen
    Ouni, Bassem
    Karray, Fakhri
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4289 - 4300
  • [7] Core network traffic prediction based on vertical federated learning and split learning
    Pengyu Li
    Chengwei Guo
    Yanxia Xing
    Yingji Shi
    Lei Feng
    Fanqin Zhou
    Scientific Reports, 14
  • [8] Core network traffic prediction based on vertical federated learning and split learning
    Li, Pengyu
    Guo, Chengwei
    Xing, Yanxia
    Shi, Yingji
    Feng, Lei
    Zhou, Fanqin
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [9] A Secure Framework in Vertical and Horizontal Federated Learning Utilizing Homomorphic Encryption
    Bai, Li-Yin
    Tsai, Pei-Hsuan
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [10] Secure Federated Learning Scheme Based on Differential Privacy and Homomorphic Encryption
    Zhang, Xuyan
    Huang, Da
    Tang, Yuhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 435 - 446