A phase-field based finite element method for modeling graphene flake reinforced composites

被引:4
|
作者
Bian, Pei-Liang [1 ]
Qing, Hai [2 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element; nano composite; phase-field method; graphene; representative volume element; REPRESENTATIVE VOLUME ELEMENTS; MECHANICAL-PROPERTIES; HETEROGENEOUS MATERIALS; TOPOLOGY OPTIMIZATION; PROGRESSIVE FAILURE; ELASTIC PROPERTIES; BRITTLE-FRACTURE; NANOCOMPOSITES; MATRIX; PROPAGATION;
D O I
10.1080/15376494.2022.2048146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new phase-field based method is proposed to represent the graphene reinforced composites and investigate the mechanical properties of the nanocomposites. The discrete graphene flakes are now represented with a continuous phase-field theta(x). Considering the extremely large aspect ratio of the graphene, both isotropic and anisotropic constitutions are used for the material at the transition region between the graphene and epoxy matrix. The present model is validated through comparison with shell based finite element model for the anisotropic constitution. The present model offers a simple way to model the thin flakes with a large aspect ratio reinforced composites in FEM software.
引用
收藏
页码:1897 / 1912
页数:16
相关论文
共 50 条
  • [1] Phase-field modeling of free dendritic growth with adaptive finite element method
    Chen Yun
    Kang Xiu-Hong
    Li Dian-Zhong
    ACTA PHYSICA SINICA, 2009, 58 (01) : 390 - 398
  • [2] Phase-field modeling of droplet movement using the discontinuous finite element method
    Chen, H.
    Shu, Y.
    Li, B. Q.
    Mohanty, P.
    Sengupta, S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 8, PTS A AND B: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, 2008, : 1613 - 1620
  • [3] Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method
    Zhu, Chang-sheng
    Lei, Peng
    Xiao, Rong-zhen
    Feng, Li
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (01) : 241 - 248
  • [4] A multiscale modeling for progressive failure behavior of unidirectional fiber-reinforced composites based on phase-field method
    Lu, Yucheng
    Feng, Ye
    Huang, Wei
    Su, Zhoucheng
    Ma, Yu E.
    Wang, Shengnan
    ENGINEERING FRACTURE MECHANICS, 2024, 310
  • [5] A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method
    Bhowmick, Sauradeep
    Liu, Gui Rong
    ENGINEERING FRACTURE MECHANICS, 2018, 204 : 369 - 387
  • [6] Adaptive finite element method for hybrid phase-field modeling of three-dimensional cracks
    Qiu, Shasha
    Duan, Qinglin
    Shao, Yulong
    Chen, Songtao
    Yao, Weian
    ENGINEERING FRACTURE MECHANICS, 2022, 271
  • [7] Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
    Hirshikesh
    Pramod, A. L. N.
    Annabattula, R. K.
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 284 - 307
  • [8] Phase-field fracture modeling for unidirectional fiber-reinforced polymer composites
    Konica, Shabnam
    Sain, Trisha
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 100
  • [9] A monolithic finite element method for phase-field modeling of fully Eulerian fluid-structure interaction
    Valizadeh, Navid
    Zhuang, Xiaoying
    Rabczuk, Timon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [10] Adaptive finite element modeling of phase-field fracture driven by hydrogen embrittlement
    Dinachandra, Moirangthem
    Alankar, Alankar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391