Mobility-Aware Asynchronous Federated Learning for Edge-Assisted Vehicular Networks

被引:0
|
作者
Wang, Siyuan [1 ,2 ]
Wu, Qiong [1 ,2 ]
Fan, Qiang [3 ]
Fan, Pingyi [4 ]
Wang, Jiangzhou [5 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
[3] Qualcomm, San Jose, CA 95110 USA
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[5] Univ Kent, Sch Engn, Canterbury CT2 7NT, Kent, England
基金
中国国家自然科学基金;
关键词
Asynchronous federated learning; Vehicular networks; Edge; Mobility; RESOURCE-ALLOCATION; INTERNET; SCHEME; CHUNK; POWER;
D O I
10.1109/ICC45041.2023.10278823
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Vehicular networks enable vehicles support some real-time applications through training data. Due to the limited computing capability of vehicles, vehicles usually transmit data to a road side unit (RSU) deployed along the road to process data collaboratively. However, vehicles are usually reluctant to share data with each other due to the inevitable data privacy. For the traditional federated learning (FL), vehicles train the data locally to obtain a local model and then upload the local model to the RSU to update the global model through aggregation, thus the data privacy can be protected through sharing model instead of raw data. The traditional FL requires to update the global model synchronously, i.e., the RSU needs to wait for all vehicles to upload local models to update the global model. However, vehicles may usually drive out of the coverage of the marked RSU before they obtain their local models through training, which reduces the accuracy of the global model. In this paper, a mobility-aware vehicular asynchronous federated learning (AFL) is proposed to solve this problem, where the RSU updates the global model once it receives a local model from a vehicle where the mobility of vehicles, amount of data and computing capability are taken into account. Simulation experiments validate that our scheme outperforms the conventional AFL scheme.
引用
收藏
页码:3621 / 3626
页数:6
相关论文
共 50 条
  • [1] Asynchronous Federated Learning Based Mobility-aware Caching in Vehicular Edge Computing
    Wang, Wenhua
    Zhao, Yu
    Wu, Qiong
    Fan, Qiang
    Zhang, Cui
    Li, Zhengquan
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 171 - 175
  • [2] Edge-assisted Federated Learning in Vehicular Networks
    La Bruna, G.
    Carletti, C. Risma
    Rusca, R.
    Casetti, C.
    Chiasserini, C. F.
    Giordanino, M.
    Tola, R.
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 163 - 170
  • [3] Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning
    Wu, Qiong
    Zhao, Yu
    Fan, Qiang
    Fan, Pingyi
    Wang, Jiangzhou
    Zhang, Cui
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (01) : 66 - 81
  • [4] Asynchronous Federated and Reinforcement Learning for Mobility-Aware Edge Caching in IoV
    Jiang, Kai
    Cao, Yue
    Song, Yujie
    Zhou, Huan
    Wan, Shaohua
    Zhang, Xu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 15334 - 15347
  • [5] Mobility-Aware Split-Federated With Transfer Learning for Vehicular Semantic Communication Networks
    Zheng, Guhan
    Ni, Qiang
    Navaie, Keivan
    Pervaiz, Haris
    Min, Geyong
    Kaushik, Aryan
    Zarakovitis, Charilaos
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17237 - 17248
  • [6] Mobility-Aware Federated Learning Considering Multiple Networks
    Macedo, Daniel
    Santos, Danilo
    Perkusich, Angelo
    Valadares, Dalton C. G.
    SENSORS, 2023, 23 (14)
  • [7] Mobility-Aware Edge Caching for Minimizing Latency in Vehicular Networks
    AlNagar, Yousef
    Gohary, Ramy H.
    Hosny, Sameh
    El-Sherif, Amr A.
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2022, 3 : 68 - 84
  • [8] Mobility-aware federated self-supervised learning in vehicular network
    Xueying Gu
    Qiong Wu
    Qiang Fan
    Pingyi Fan
    Urban Lifeline, 2 (1):
  • [9] Enhancing Edge-Assisted Federated Learning with Asynchronous Aggregation and Cluster Pairing
    Sha, Xiaobao
    Sun, Wenjian
    Liu, Xiang
    Luo, Yang
    Luo, Chunbo
    ELECTRONICS, 2024, 13 (11)
  • [10] Mobility-Aware Routing and Caching: A Federated Learning Assisted Approach
    Cao, Yuwen
    Maghsudi, Setareh
    Ohtsuki, Tomoaki
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,