Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors

被引:2
|
作者
Heiter, Edith [1 ]
Kang, Bo [1 ]
Seurinck, Ruth [1 ,2 ]
Lijffijt, Jefrey [1 ]
机构
[1] Univ Ghent, Ghent, Belgium
[2] VIB Ctr Inflammat Res, Ghent, Belgium
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1007/978-3-031-30047-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional t-SNE (ct-SNE) is a recent extension to t-SNE that allows removal of known cluster information from the embedding, to obtain a visualization revealing structure beyond label information. This is useful, for example, when one wants to factor out unwanted differences between a set of classes. We show that ct-SNE fails in many realistic settings, namely if the data is well clustered over the labels in the original high-dimensional space. We introduce a revised method by conditioning the high-dimensional similarities instead of the low-dimensional similarities and storing within- and across-label nearest neighbors separately. This also enables the use of recently proposed speedups for t-SNE, improving the scalability. From experiments on synthetic data, we find that our proposed method resolves the considered problems and improves the embedding quality. On real data containing batch effects, the expected improvement is not always there. We argue revised ct-SNE is preferable overall, given its improved scalability. The results also highlight new open questions, such as how to handle distance variations between clusters.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [1] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    [J]. Machine Learning, 2021, 110 : 2905 - 2940
  • [2] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [3] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [4] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [5] Interactive Supervision with t-SNE
    Luus, Francois
    Khan, Naweed
    Akhalwaya, Ismail
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), 2019, : 85 - 92
  • [6] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294
  • [7] Visualization of SNPs with t-SNE
    Platzer, Alexander
    [J]. PLOS ONE, 2013, 8 (02):
  • [8] Clustering with t-SNE, Provably
    Linderman, George C.
    Steinerberger, Stefan
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (02): : 313 - 332
  • [9] Accelerating Hyperbolic t-SNE
    Skrodzki, Martin
    van Geffen, Hunter
    Chaves-de-Plaza, Nicolas F.
    Hollt, Thomas
    Eisemann, Elmar
    Hildebrandt, Klaus
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 4403 - 4415
  • [10] HCt-SNE: Hierarchical Constraints with t-SNE
    Vu, Viet Minh
    Bibal, Adrien
    Frenay, Benoit
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,