Development of a machine learning model for prediction of continuous cooling transformation diagrams in welding heat-affected zone

被引:1
|
作者
Zhang, Biao [1 ]
Wang, Baigang [1 ]
Xue, Weihua [2 ]
Ullah, Asad [3 ]
Zhang, Tianhao [1 ]
Wang, Hao [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Liaoning Tech Univ, Sch Mat Sci & Engn, Fuxing 123099, Peoples R China
[3] Karakoram Int Univ, Dept Math Sci, Gilgit Baltistan 15100, Pakistan
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORK MODEL; CCT DIAGRAMS; STEEL; SIMULATION;
D O I
10.1007/s10853-023-08322-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The traditional thermal simulation technique for the measurement of the weld continuous cooling transformation diagrams in synthetic weld heat-affected zone (SH-CCT diagrams) is a complex and time-consuming process. Therefore, it is necessary to develop a model that can rapidly and accurately predict SH-CCT diagrams. In this article, an optimized machine learning (ML) model is developed to predict the SH-CCT diagrams of various types of steel, which consist of the Back Propagation (BP) neural network for the prediction of ferrite transformation starting temperature curves (Fs), and Radial Basis Function (RBF) neural network for the prediction of bainite, pearlite, and martensite transformation starting temperature curves (Bs, Ps, Ms). The accuracy of the present ML model was firstly verified by the excellent agreement between the predicted transformation starting temperature curves and the measured values on the internal dataset (Validation Set I). It was also observed that the predictions obtained through the present model are better than those of the previous models. Moreover, the excellent generalization ability was further verified by the prediction performance on the external dataset (Validation Set II), in which the R-2 values were all above 0.93, and the MAE values were less than 7 K. This successful demonstration indicates that the present model can accurately predict the SH-CCT diagrams of various types of steel, which provides a certain reference for the optimization of steel welding process parameters and the prediction of heat-affected zone (HAZ) microstructure.
引用
收藏
页码:4795 / 4808
页数:14
相关论文
共 50 条
  • [1] Development of a machine learning model for prediction of continuous cooling transformation diagrams in welding heat-affected zone
    Biao Zhang
    Baigang Wang
    Weihua Xue
    Asad Ullah
    Tianhao Zhang
    Hao Wang
    [J]. Journal of Materials Science, 2023, 58 : 4795 - 4808
  • [2] A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels
    Xiaoxiao Geng
    Xinping Mao
    Hong-Hui Wu
    Shuize Wang
    Weihua Xue
    Guanzhen Zhang
    Asad Ullah
    Hao Wang
    [J]. Journal of Materials Science & Technology, 2022, 107 (12) : 207 - 215
  • [3] A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels
    Geng, Xiaoxiao
    Mao, Xinping
    Wu, Hong-Hui
    Wang, Shuize
    Xue, Weihua
    Zhang, Guanzhen
    Ullah, Asad
    Wang, Hao
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 107 : 207 - 215
  • [4] Prediction of continuous cooling transformation diagram for weld heat affected zone by machine learning
    Minamoto, Satoshi
    Tsukamoto, Susumu
    Kasuya, Tadashi
    Watanabe, Makoto
    Demura, Masahiko
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2022, 2 (01): : 402 - 415
  • [5] Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels
    M. Shome
    O. N. Mohanty
    [J]. Metallurgical and Materials Transactions A, 2006, 37 : 2159 - 2169
  • [6] Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels
    Shome, M.
    Mohanty, O. N.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (07): : 2159 - 2169
  • [7] A PREDICTION OF WELDING PROCEDURE TO AVOID HEAT-AFFECTED ZONE CRACKING
    ITO, Y
    BESSYO, K
    [J]. SUMITOMO SEARCH, 1969, (02): : 22 - &
  • [8] EFFECT OF WELDING CONDITIONS ON COOLING RATE AND HARDNESS IN HEAT-AFFECTED ZONE
    BRADSTREET, BJ
    [J]. WELDING JOURNAL, 1969, 48 (11) : S499 - +
  • [9] Prediction of Continuous Cooling Transformation Diagrams for Ni-Cr-Mo Welding Steels via Machine Learning Approaches
    Geng, Xiaoxiao
    Wang, Hao
    Ullah, Asad
    Xue, Weihua
    Xiang, Song
    Meng, Li
    Ma, Guang
    [J]. JOM, 2020, 72 (11) : 3926 - 3934
  • [10] Prediction of Continuous Cooling Transformation Diagrams for Ni-Cr-Mo Welding Steels via Machine Learning Approaches
    Xiaoxiao Geng
    Hao Wang
    Asad Ullah
    Weihua Xue
    Song Xiang
    Li Meng
    Guang Ma
    [J]. JOM, 2020, 72 : 3926 - 3934