Uniform general stability of a coupled Volterra integro-differential equations with fading memories

被引:1
|
作者
Buriol, C. [1 ]
Delatorre, L. G. [2 ]
Tavares, E. H. Gomes [3 ]
Soares, D. C. [2 ]
机构
[1] Univ Fed Santa Maria, Dept Math, BR-97105900 Santa Maria, RS, Brazil
[2] Fed Univ Pampa, Dept Math, Campus Itaqui, BR-97650000 Itaqui, RS, Brazil
[3] Fed Univ, PhD Program Math, BR-66075110 Belem, PA, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Uniform general stability; Linear viscoelasticity; Wave system; ASYMPTOTIC STABILITY; WAVE-EQUATIONS; DECAY-RATES; HYPERBOLIC SYSTEMS; EXISTENCE; ENERGY; BEHAVIOR;
D O I
10.1007/s00033-023-01963-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a coupled linear integro-differential wave system with memory. We study the existence and uniqueness of global solutions and prove the uniform stabilization of the total energy when time goes to infinity. To do this, we follow the lines of Conti et al. (Math Models Methods Appl Sci 18(1):21-45, 2008) and Conti and Pata (Z Angew Math Phys 71(1):6, 2020) and use the semigroup approach as the main tool.
引用
收藏
页数:21
相关论文
共 50 条