PumaMedNet-CXR: An Explainable Generative Artificial Intelligence for the Analysis and Classification of Chest X-Ray Images

被引:1
|
作者
Minutti-Martinez, Carlos [1 ]
Escalante-Ramirez, Boris [1 ,2 ]
Olveres-Montiel, Jimena [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, CECAv UNAM, Ctr Estudios Computac Avanzada, Mexico City, DF, Mexico
[2] Univ Nacl Autonoma Mexico, LaPI UNAM, Lab Avanzado Procesamiento Imagene, Mexico City, DF, Mexico
关键词
Medical Image Analysis; Autoencoder; Explainable Artificial Intelligence; Chest X-Ray;
D O I
10.1007/978-3-031-47640-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce PumaMedNet-CXR, a generative AI designed for medical image classification, with a specific emphasis on Chest X-ray (CXR) images. The model effectively corrects common defects in CXR images, offers improved explainability, enabling a deeper understanding of its decision-making process. By analyzing its latent space, we can identify and mitigate biases, ensuring a more reliable and transparent model. Notably, PumaMedNet-CXR achieves comparable performance to larger pre-trained models through transfer learning, making it a promising tool for medical image analysis. The model's highly efficient autoencoder-based architecture, along with its explainability and bias mitigation capabilities, contribute to its significant potential in advancing medical image understanding and analysis.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 50 条
  • [1] PumaMedNet-CXR: An Explainable Generative Artificial Intelligence for the Analysis and Classification of Chest X-Ray Images
    Minutti-Martinez, Carlos
    Escalante-Ramirez, Boris
    Olveres-Montiel, Jimena
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 909 - 920
  • [2] COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence
    Khan, Muhammad Attique
    Azhar, Marium
    Ibrar, Kainat
    Alqahtani, Abdullah
    Alsubai, Shtwai
    Binbusayyis, Adel
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence
    Khan, Muhammad Attique
    Azhar, Marium
    Ibrar, Kainat
    Alqahtani, Abdullah
    Alsubai, Shtwai
    Binbusayyis, Adel
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] AI-CenterNet CXR: An artificial intelligence (AI) enabled system for localization and classification of chest X-ray disease
    Albahli, Saleh
    Nazir, Tahira
    FRONTIERS IN MEDICINE, 2022, 9
  • [5] Evaluating Explainable Artificial Intelligence for X-ray Image Analysis
    Miro-Nicolau, Miquel
    Moya-Alcover, Gabriel
    Jaume-i-Capo, Antoni
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [6] Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images
    Ribeiro, Estela
    Cardenas, Diego A. C.
    Dias, Felipe M.
    Krieger, Jose E.
    Gutierrez, Marco A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (05): : 524 - 534
  • [7] Artificial Intelligence for Early Detection of Chest Nodules in X-ray Images
    Chiu, Hwa-Yen
    Peng, Rita Huan-Ting
    Lin, Yi-Chian
    Wang, Ting-Wei
    Yang, Ya-Xuan
    Chen, Ying-Ying
    Wu, Mei-Han
    Shiao, Tsu-Hui
    Chao, Heng-Sheng
    Chen, Yuh-Min
    Wu, Yu-Te
    BIOMEDICINES, 2022, 10 (11)
  • [8] Artificial Intelligence Solutions for Analysis of X-ray Images
    Adams, Scott J.
    Henderson, Robert D. E.
    Yi, Xin
    Babyn, Paul
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2021, 72 (01): : 60 - 72
  • [9] Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images
    Althaqafi, Turki
    AL-Ghamdi, Abdullah S. AL-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2023, 11 (09)
  • [10] A Free Web Service for Fast COVID-19 Classification of Chest X-Ray Images with Artificial Intelligence
    Bermudez Castro, Jose David
    Ruiz, Jose E.
    Diaz, Pedro Achanccaray
    Canchumuni, Smith Arauco
    Villalobos, Cristian Munoz
    Coelho, Felipe Borges
    Mendoza, Leonardo Forero
    Pacheco, Marco Aurelio C.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT I, 2022, 13375 : 412 - 427