Recommendations for the use of pediatric data in artificial intelligence and machine learning ACCEPT-AI

被引:9
|
作者
Muralidharan, V. [1 ]
Burgart, A. [2 ]
Daneshjou, R. [1 ,3 ]
Rose, S. [4 ]
机构
[1] Stanford Univ, Dept Dermatol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Anesthesiol Perioperat & Pain Med, Stanford, CA USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[4] Stanford Univ, Dept Hlth Policy, Stanford, CA USA
关键词
REPORTING GUIDELINES;
D O I
10.1038/s41746-023-00898-5
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
ACCEPT-AI is a framework of recommendations for the safe inclusion of pediatric data in artificial intelligence and machine learning (AI/ML) research. It has been built on fundamental ethical principles of pediatric and AI research and incorporates age, consent, assent, communication, equity, protection of data, and technological considerations. ACCEPT-AI has been designed to guide researchers, clinicians, regulators, and policymakers and can be utilized as an independent tool, or adjunctively to existing AI/ML guidelines.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Recommendations for the use of pediatric data in artificial intelligence and machine learning ACCEPT-AI
    V. Muralidharan
    A. Burgart
    R. Daneshjou
    S. Rose
    [J]. npj Digital Medicine, 6 (1)
  • [2] Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist
    Gombolay, Grace Y.
    Gopalan, Nakul
    Bernasconi, Andrea
    Nabbout, Rima
    Megerian, Jonathan T.
    Siegel, Benjamin
    Hallman-Cooper, Jamika
    Bhalla, Sonam
    Gombolay, Matthew C.
    [J]. PEDIATRIC NEUROLOGY, 2023, 141 : 42 - 51
  • [4] Application of artificial intelligence (AI) and machine learning (ML) in pediatric epilepsy: a narrative review
    Kim, Hunmin
    Hwang, Hee
    [J]. PEDIATRIC MEDICINE, 2022, 5
  • [5] The use of machine learning and artificial intelligence within pediatric critical care
    Neel Shah
    Ahmed Arshad
    Monty B. Mazer
    Christopher L. Carroll
    Steven L. Shein
    Kenneth E. Remy
    [J]. Pediatric Research, 2023, 93 : 405 - 412
  • [6] The use of machine learning and artificial intelligence within pediatric critical care
    Shah, Neel
    Arshad, Ahmed
    Mazer, Monty B.
    Carroll, Christopher L.
    Shein, Steven L.
    Remy, Kenneth E.
    [J]. PEDIATRIC RESEARCH, 2023, 93 (02) : 405 - 412
  • [7] Assessing the effectiveness of artificial intelligence (AI) in prioritising CT head interpretation: study protocol for a stepped-wedge cluster randomised trial (ACCEPT-AI)
    Vimalesvaran, Kavitha
    Robert, Dennis
    Kumar, Shamie
    Kumar, Ayan
    Narbone, Mariapola
    Dharmadhikari, Rahul
    Harrison, Mark
    Ather, Sarim
    Novak, Alex
    Grzeda, Mariusz
    Gooch, Jane
    Woznitza, Nicholas
    Hall, Mark
    Shuaib, Haris
    Lowe, David J.
    [J]. BMJ OPEN, 2024, 14 (06):
  • [8] Artificial intelligence, machine learning and the pediatric airway
    Matava, Clyde
    Pankiv, Evelina
    Ahumada, Luis
    Weingarten, Benjamin
    Simpao, Allan
    [J]. PEDIATRIC ANESTHESIA, 2020, 30 (03) : 264 - 268
  • [9] Engineering and clinical use of artificial intelligence (AI) with machine learning and data science advancements: radiology leading the way for future
    Hameed, B. M. Zeeshan
    Prerepa, Gayathri
    Patil, Vathsala
    Shekhar, Pranav
    Zahid Raza, Syed
    Karimi, Hadis
    Paul, Rahul
    Naik, Nithesh
    Modi, Sachin
    Vigneswaran, Ganesh
    Prasad Rai, Bhavan
    Chlosta, Piotr
    Somani, Bhaskar K.
    [J]. THERAPEUTIC ADVANCES IN UROLOGY, 2021, 13
  • [10] Editorial: Artificial intelligence and machine learning in pediatric surgery
    Verhoeven, Rosa
    Hulscher, Jan B. F.
    [J]. FRONTIERS IN PEDIATRICS, 2024, 12