Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture

被引:6
|
作者
Araujo, Victor Lucas Vieira Prudencio [1 ]
Fracetto, Giselle Gomes Monteiro [2 ]
Silva, Antonio Marcos Miranda [1 ]
Pereira, Arthur Prudencio de Araujo [3 ]
Freitas, Caio Cesar Gomes [1 ]
Barros, Felipe Martins do Rego [1 ]
Santana, Maiele Cintra [1 ]
Feiler, Henrique Petry [4 ]
Matteoli, Filipe Pereira [1 ]
Fracetto, Felipe Jose Cury [2 ]
Cardoso, Elke Jurandy Bran Nogueira [1 ]
机构
[1] Univ Sao Paulo, Dept Ciencia Solo, Escola Super Agr Luiz de Queiroz, BR-13400970 Piracicaba, SP, Brazil
[2] Univ Fed Rural Pernambuco, Dept Agron, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Ceara, Ctr Ciencias Agr, Dept Ciencias Solo, BR-60355636 Fortaleza, Ceara, Brazil
[4] Purdue Univ, Dept Agron, W Lafayette, IN 47906 USA
基金
巴西圣保罗研究基金会;
关键词
Water deficit; Bacterial inoculation; Microbial inoculants; Maize cultivation; Biotechnological; PLANT-GROWTH; AZOSPIRILLUM-BRASILENSE; DROUGHT; ARTHROBACTER; STRESS; ENHANCEMENT; MICROBIOME; RESISTANCE; CAATINGA; STRAIN;
D O I
10.1016/j.micres.2023.127352
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Climate change has caused irregularities in water distribution, which affect the soil drying-wetting cycle and the development of economically important agricultural crops. Therefore, the use of plant growth-promoting bac-teria (PGPB) emerges as an efficient strategy to mitigate negative impacts on crop yield. We hypothesized that the use of PGPB (in consortium or not) had potential to promote maize (Zea mays L.) growth under a soil moisture gradient in both non-sterile and sterile soils. Thirty PGPB strains were characterized for direct plant growth-promotion and drought tolerance induction mechanisms and were used in two independent experiments. Four soil water contents were used to simulate a severe drought (30% of field capacity [FC]), moderate drought (50% of FC), no drought (80% of FC) and, finally, a water gradient comprising the three mentioned soil water contents (80%, 50%, and 30% of FC). Two bacteria strains (BS28-7 Arthrobacter sp. and BS43 Streptomyces alboflavus), in addition to three consortia (BC2, BC4 and BCV) stood out in maize growth performance in experiment 1 and were used in experiment 2. Overall, under moderate drought, inoculation with BS43 surpassed the control treatment in root dry mass and nutrient uptake. Considering the water gradient treatment (80-50-30% of FC), the greatest total biomass was found in the uninoculated treatment when compared to BS28-7, BC2, and BCV. The greatest development of Z. mays L. was only observed under constant water stress conditions in the presence of PGPB. This is the first report that demonstrated the negative effect of individual inoculation of Arthrobacter sp. and the consortium of this strain with Streptomyces alboflavus on the growth of Z. mays L. based on a soil moisture gradient; however, future studies are needed for further validation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.)
    Fernando Amezquita-Aviles, Carlos
    Brizeida Coronel-Acosta, Claudia
    de los Santos-Villalobos, Sergio
    Santoyo, Gustavo
    Isela Parra-Cota, Fannie
    BIOTECNIA, 2022, 24 (01): : 15 - 22
  • [2] Isolation of native bacteria with mexican native maize (Zea mays L.) growth promoting potential
    Sanchez-Ceja, Monica Guadalupe
    Loeza-Lara, Pedro Damian
    Carballar-Hernandez, Santos
    Jimenez-Mejia, Rafael
    Medina-Estrada, Ricardo Ivan
    BIOTECNIA, 2024, 26 (01): : 83 - 92
  • [3] Endophytic Alkalotolerant Plant Growth-Promoting Bacteria Render Maize (Zea mays L.) Growth Under Alkaline Stress
    Srishti Kar
    Shashank Kumar Mishra
    Sankalp Misra
    Renuka Agarwal
    Susheel Kumar
    Puneet Singh Chauhan
    Current Microbiology, 2024, 81
  • [4] Endophytic Alkalotolerant Plant Growth-Promoting Bacteria Render Maize (Zea mays L.) Growth Under Alkaline Stress
    Kar, Srishti
    Mishra, Shashank Kumar
    Misra, Sankalp
    Agarwal, Renuka
    Kumar, Susheel
    Chauhan, Puneet Singh
    CURRENT MICROBIOLOGY, 2024, 81 (01)
  • [5] EFFECT OF PLANT GROWTH PROMOTING BACTERIA AND DROUGHT ON SPRING MAIZE (ZEA MAYS L.)
    Mubeen, Muhammad
    Bano, Asghari
    Ali, Barkat
    Ul Islam, Zia
    Ahmad, Ashfaq
    Hussain, Sajjad
    Fahad, Shah
    Nasim, Wajid
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (02) : 731 - 739
  • [6] Amelioration of growth of maize (Zea mays L.) seedling using plant growth promoting bacteria
    Kaneriya, Jinesh P.
    Pattani, Vivek B.
    Joshi, Krishna
    Gandhi, Dhara
    Sanghvi, Gaurav
    PLANT SCIENCE TODAY, 2024, 11 (02): : 353 - 362
  • [7] Impact of historical soil management on the interaction of plant-growth-promoting bacteria with maize (Zea mays L.)
    Guidinelle, Rebyson Bissaco
    Burak, Diego Lang
    Rangel, Otacilio Jose Passos
    Pecanha, Anderson Lopes
    Passos, Renato Ribeiro
    da Rocha, Leticia Oliveira
    Olivares, Fabio Lopes
    Mendonca, Eduardo de Sa
    HELIYON, 2024, 10 (07)
  • [8] Humic substances and plant growth-promoting bacteria enhance corn (Zea mays L.) development
    de Oliveira, Elismar Pereira
    Soares, Poliana Prates de Souza
    Correia, Andreza de Jesus
    da Franaca, Robson Silva
    Miguel, Divino Levi
    Nobrega, Rafaela Simao Abrahao
    Leal, Patricia Lopes
    SOUTH AFRICAN JOURNAL OF BOTANY, 2024, 166 : 539 - 549
  • [9] Degradability of Biodegradable Soil Moisture Sensor Components and Their Effect on Maize (Zea mays L.) Growth
    Dahal, Subash
    Yilma, Wubengeda
    Sui, Yongkun
    Atreya, Madhur
    Bryan, Samantha
    Davis, Valerie
    Whiting, Gregory Lewis
    Khosla, Raj
    SENSORS, 2020, 20 (21) : 1 - 13
  • [10] Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (Zea mays L.)
    Vahid Alah Jahandideh Mahjen Abadi
    Mozhgan Sepehri
    Hadi Asadi Rahmani
    Mehdi Zarei
    Abdolmajid Ronaghi
    Seyed Mohsen Taghavi
    Mahdieh Shamshiripour
    Journal of Soil Science and Plant Nutrition, 2020, 20 : 2348 - 2363