Regularization of anisotropic full-waveform inversion with multiple parameters by adversarial neural networks

被引:0
|
作者
Yao, Jiashun [1 ]
Warner, Michael [1 ]
Wang, Yanghua [1 ]
机构
[1] Imperial Coll London, Resource Geophys Acad, Ctr Reservoir Geophys, London SW7 2BP, England
关键词
TOMOGRAPHY;
D O I
10.1190/GEO2021-0794.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The anisotropic full-waveform inversion (FWI) is a seis-mic inverse problem for multiple parameters, which aims to simultaneously reconstruct the vertical velocity and the anisotropic parameters of the earth's subsurface. This multi -parameter inverse problem suffers from two issues. First, the objective function of the data fitting is less sensitive to the anisotropic parameters. Second, the crosstalk effect among the different parameters worsens the model update in the iterative inversion. We have developed a method that sta-tistically regularizes the anisotropic FWI using Wasserstein adversarial networks, by penalizing the Wasserstein distance between the distribution of the current model parameters and that of the parameters at the borehole locations. The regu-larizer can mitigate the issues of anisotropic FWI with multi-ple parameters and therefore it also can be applied to other inverse problems with multiple parameters.
引用
收藏
页码:R95 / R103
页数:9
相关论文
共 50 条
  • [1] Integrating deep neural networks with full-waveform inversion: Reparametrization, regularization, and uncertainty quantification
    Zhu W.
    Xu K.
    Darve E.
    Biondi B.
    Beroza G.C.
    Geophysics, 2021, 87 (01)
  • [2] Integrating deep neural networks with full-waveform inversion: Reparameterization, regularization, and uncertainty quantification
    Zhu, Weiqiang
    Xu, Kailai
    Darve, Eric
    Biondi, Biondo
    Beroza, Gregory C.
    GEOPHYSICS, 2022, 87 (01) : R93 - R109
  • [3] Full-Waveform Inversion Using a Learned Regularization
    Sun, Pengpeng
    Yang, Fangshu
    Liang, Hongxian
    Ma, Jianwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Full-waveform inversion using seislet regularization
    Xue, Zhiguang
    Zhu, Hejun
    Fomel, Sergey
    GEOPHYSICS, 2017, 82 (05) : A43 - A49
  • [5] Blocky regularization schemes for Full-Waveform Inversion
    Guitton, Antoine
    GEOPHYSICAL PROSPECTING, 2012, 60 (05) : 870 - 884
  • [6] Comparison of regularization methods for full-waveform inversion
    Li X.
    Wang W.
    Guo X.
    Zhang T.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2022, 57 (01): : 129 - 139
  • [7] Reparameterized full-waveform inversion using deep neural networks
    He, Qinglong
    Wang, Yanfei
    GEOPHYSICS, 2021, 86 (01) : V1 - V13
  • [8] Elastic full-waveform inversion using tools of neural networks
    Zhang, Wensheng
    Chen, Zheng
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [9] Total Variation Regularization Strategies in Full-Waveform Inversion
    Esser, Ernie
    Guasch, Lluis
    van Leeuwen, Tristan
    Aravkin, Aleksandr Y.
    Herrmann, Felix J.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01): : 376 - 406
  • [10] Anisotropic 3D full-waveform inversion
    Warner, Michael
    Ratcliffe, Andrew
    Nangoo, Tenice
    Morgan, Joanna
    Umpleby, Adrian
    Shah, Nikhil
    Vinje, Vetle
    Stekl, Ivan
    Guasch, Lluis
    Win, Caroline
    Conroy, Graham
    Bertrand, Alexandre
    GEOPHYSICS, 2013, 78 (02) : R59 - R80