MEASUREMENT OF ENERGY DISTRIBUTION FOR LOW POWER NANOFLARES

被引:3
|
作者
Bogachev, S. A. [1 ,2 ]
Erkhova, N. F. [3 ]
机构
[1] RAS, Space Res Inst, Moscow, Russia
[2] Samara Natl Res Univ, Samara, Russia
[3] RAS, PN Lebedev Phys Inst, Moscow, Russia
来源
SOLAR-TERRESTRIAL PHYSICS | 2023年 / 9卷 / 01期
关键词
solar activity; nanoflares; coronal heating; SOLAR; MICROFLARES; SUN; MINIMUM; POINTS;
D O I
10.12737/stp-91202301
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a method to measure the en-ergy distribution of low-energy flares (nanoflares) in the energy range below 10(23) erg. As an example, we meas-ured the spectrum of nanoflares in the 10(21)-10(26) erg range for two Sun's frames observed by the SDO/AIA telescope in the 171 angstrom channel. Nanoflares are shown to have the power law spectrum in the 10(22)-10(26) erg range. The spectral index is approximately constant, i.e. ener-gy-independent. For energies below 10(22) erg, the spec-trum begins to collapse. For lower energies, below 10(21) erg, the method does not give statistically significant results due to major errors. The results of the study indicate that solar nanoflares can be detected up to 10(21)- 10(22) erg energies. Results have previously been reported only for 1023 erg and above. The total energy flux of nanoflares in the energy range above 10(22) erg, according to our data, is P approximate to 10(4) erg cm(-2) s(-1), which is about 15 times less than heating losses of the solar corona.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [1] Statistical analysis of the energy distribution of nanoflares in the quiet Sun
    Parnell, CE
    Jupp, PE
    [J]. ASTROPHYSICAL JOURNAL, 2000, 529 (01): : 554 - 569
  • [2] The Energy Distribution of Nanoflares at the Minimum and Rising Phase of Solar Cycle 24
    Ulyanov, A. S.
    Bogachev, S. A.
    Reva, A. A.
    Kirichenko, A. S.
    Loboda, I. P.
    [J]. ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2019, 45 (04): : 248 - 257
  • [3] Energy Distribution of Nanoflares in Three-Dimensional Simulations of Coronal Heating
    Ng, C. S.
    Lin, L.
    [J]. SPACE WEATHER: THE SPACE RADIATION ENVIRONMENT, 2012, 1500 : 38 - 43
  • [4] The Energy Distribution of Nanoflares at the Minimum and Rising Phase of Solar Cycle 24
    A. S. Ulyanov
    S. A. Bogachev
    A. A. Reva
    A. S. Kirichenko
    I. P. Loboda
    [J]. Astronomy Letters, 2019, 45 : 248 - 257
  • [6] Turbulent coronal heating and the distribution of nanoflares
    Dmitruk, P
    Gomez, DO
    [J]. ASTROPHYSICAL JOURNAL, 1997, 484 (01): : L83 - L86
  • [7] Solar energy radiation measurement with a low-power solar energy harvester
    Lopez-Lapena, Oscar
    Pallas-Areny, Ramon
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 150 - 155
  • [8] Energy Measurement in High Voltage Power Networks at Low Currents
    Izquierdo, D.
    Santos, A.
    Brehm, M.
    Slomovitz, D.
    [J]. 2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [9] Distribution processes optimization in power supply systems with low power energy sources
    Yarmoliuk, Olena
    Veremiichuk, Yurii
    Opryshko, Vitalii
    Mahnitko, Anatolijs
    Zicmane, Inga
    Lomane, Tatjana
    [J]. 2022 IEEE 63TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2022,
  • [10] Development of a measurement system for power quantities in electrical energy distribution systems
    Driesen, J
    Deconinck, G
    Van Den Keybus, J
    Bolsens, B
    De Brabandere, K
    Vanthournout, K
    Belmans, R
    [J]. IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 1625 - 1630