Self-Polarization Triggered Multiple Polar Units Toward Electrochemical Reduction of CO2 to Ethanol with High Selectivity

被引:18
|
作者
Zhang, Yangyang [1 ]
Chen, Yanxu [1 ]
Wang, Xiaowen [1 ]
Feng, Yafei [1 ]
Zhang, Huaikun [1 ]
Zhang, Genqiang [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
Bimetal; CO2; DFT Calculations; Elctrocatalysis; Ethanol; Polarization; ELECTROREDUCTION; CATALYSTS; ADSORPTION; SITES; NI;
D O I
10.1002/anie.202302241
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon-carbon (C-C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu-MOF) nanorod array with encapsulated Cu2O (Cu2O@MOF/CF), which can induce an intensive internal electric field to increase the C-C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2O@MOF/CF as the self-supporting electrode, the ethanol faradaic efficiency (FEethanol) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working-potential of -0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2-saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C-C coupling and reduce the formation energy of H2CCHO*-to-*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Selectivity in Electrochemical CO2 Reduction
    Saha, Paramita
    Amanullah, Sk
    Dey, Abhishek
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (02) : 134 - 144
  • [2] Selectivity of Electrochemical CO2 Reduction toward Ethanol and Ethylene: The Key Role of Surface-Active Hydrogen
    Ouyang, Yixin
    Shi, Li
    Bai, Xiaowan
    Ling, Chongyi
    Li, Qiang
    Wang, Jinlan
    ACS CATALYSIS, 2023, 13 (23) : 15448 - 15456
  • [3] Electrochemical CO2 reduction: Predicting the selectivity
    Albrechtsen, Michael Mirabueno
    Bagger, Alexander
    CURRENT OPINION IN ELECTROCHEMISTRY, 2025, 50
  • [4] Progress in electrochemical reduction of CO2 by bimetallic materials with high selectivity
    Wang, Yujing
    Man, Liu
    Si, Jianting
    Ting, Zhang
    Geng, Ren
    Chai, Shouning
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2023, 51 (04): : 1 - 14
  • [5] Tailoring Self-Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward High-Performance Consecutive Multi-Band Electromagnetic Wave Absorption at Gigahertz
    Cheng, Junye
    Zhang, Huibin
    Wang, Honghan
    Huang, Zehao
    Raza, Hassan
    Hou, Chuanxu
    Zheng, Guangping
    Zhang, Deqing
    Zheng, Qingbin
    Che, Renchao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (24)
  • [6] Tailoring Self-Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward High-Performance Consecutive Multi-Band Electromagnetic Wave Absorption at Gigahertz
    Cheng, Junye
    Zhang, Huibin
    Wang, Honghan
    Huang, Zehao
    Raza, Hassan
    Hou, Chuanxu
    Zheng, Guangping
    Zhang, Deqing
    Zheng, Qingbin
    Che, Renchao
    Advanced Functional Materials, 2022, 32 (24):
  • [7] Cu-Sn Aerogels for Electrochemical CO2 Reduction with High CO Selectivity
    Pan, Yexin
    Wu, Muchen
    Ye, Ziran
    Tang, Haibin
    Hong, Zhanglian
    Zhi, Mingjia
    MOLECULES, 2023, 28 (03):
  • [8] Stable CuIn alloy for electrochemical CO2 reduction to CO with high-selectivity
    Zhou, Qiancheng
    Tang, Xiangnong
    Qiu, Shunhang
    Wang, Liyuan
    Hao, Lina
    Yu, Ying
    MATERIALS TODAY PHYSICS, 2023, 33
  • [9] Calculations of Product Selectivity in Electrochemical CO2 Reduction
    Hussain, Javed
    Jonsson, Hannes
    Skulason, Egill
    ACS CATALYSIS, 2018, 8 (06): : 5240 - 5249
  • [10] Photoelectroreduction CO2 to Ethanol Over BiFeO3 with Synergistic Effect of Self-Polarization and External Electric Field
    Liu, Bo
    Li, Jiuyang
    Tan, Lipeng
    Zhang, Xiaochao
    Guo, Xin
    Wang, Xiaokun
    Zhang, Changming
    SOLAR RRL, 2024, 8 (22):