Cotton Fiber Quality Estimation Based on Machine Learning Using Time Series UAV Remote Sensing Data

被引:2
|
作者
Xu, Weicheng [1 ,2 ,3 ]
Yang, Weiguang [1 ,2 ,3 ]
Chen, Pengchao [1 ,2 ,3 ]
Zhan, Yilong [1 ,2 ,3 ]
Zhang, Lei [3 ,4 ]
Lan, Yubin [1 ,2 ,3 ,5 ]
机构
[1] South China Agr Univ, Coll Elect Engn, Guangzhou 510642, Peoples R China
[2] Guangdong Lab Lingnan Modern Agr, Guangzhou 510642, Peoples R China
[3] Natl Ctr Int Collaborat Precis Agr Aviat Pesticide, Guangzhou 510642, Peoples R China
[4] South China Agr Univ, Coll Agr, Guangzhou 510642, Peoples R China
[5] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
关键词
UAV remote sensing; cotton fiber quality; inversion; semantic segmentation; SPINNING PROCESSES; YIELD; NITROGEN; IMPACT;
D O I
10.3390/rs15030586
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As an important factor determining the competitiveness of raw cotton, cotton fiber quality has received more and more attention. The results of traditional detection methods are accurate, but the sampling cost is high and has a hysteresis, which makes it difficult to measure cotton fiber quality parameters in real time and at a large scale. The purpose of this study is to use time-series UAV (Unmanned Aerial Vehicle) multispectral and RGB remote sensing images combined with machine learning to model four main quality indicators of cotton fibers. A deep learning algorithm is used to identify and extract cotton boll pixels in remote sensing images and improve the accuracy of quantitative extraction of spectral features. In order to simplify the input parameters of the model, the stepwise sensitivity analysis method is used to eliminate redundant variables and obtain the optimal input feature set. The results of this study show that the R-2 of the prediction model established by a neural network is improved by 29.67% compared with the model established by linear regression. When the spectral index is calculated after removing the soil pixels used for prediction, R-2 is improved by 4.01% compared with the ordinary method. The prediction model can well predict the average length, uniformity index, and micronaire value of the upper half. R-2 is 0.8250, 0.8014, and 0.7722, respectively. This study provides a method to predict the cotton fiber quality in a large area without manual sampling, which provides a new idea for variety breeding and commercial decision-making in the cotton industry.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Cotton yield estimation model based on machine learning using time series UAV remote sensing data
    Xu, Weicheng
    Chen, Pengchao
    Zhan, Yilong
    Chen, Shengde
    Zhang, Lei
    Lan, Yubin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [2] Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data
    Yang, Shurong
    Li, Lei
    Fei, Shuaipeng
    Yang, Mengjiao
    Tao, Zhiqiang
    Meng, Yaxiong
    Xiao, Yonggui
    [J]. DRONES, 2024, 8 (07)
  • [3] Wheat yield estimation using remote sensing data based on machine learning approaches
    Cheng, Enhui
    Zhang, Bing
    Peng, Dailiang
    Zhong, Liheng
    Yu, Le
    Liu, Yao
    Xiao, Chenchao
    Li, Cunjun
    Li, Xiaoyi
    Chen, Yue
    Ye, Huichun
    Wang, Hongye
    Yu, Ruyi
    Hu, Jinkang
    Yang, Songlin
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Machine learning for multiphase flowrate estimation with time series sensing data
    Wang, Haokun
    Zhang, Maomao
    Yang, Yunjie
    [J]. Measurement: Sensors, 2020, 10-12
  • [5] Detection of Crop Hail Damage with a Machine Learning Algorithm Using Time Series of Remote Sensing Data
    Sosa, Leandro
    Justel, Ana
    Molina, Inigo
    [J]. AGRONOMY-BASEL, 2021, 11 (10):
  • [6] Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing
    Tian, Yichao
    Huang, Hu
    Zhou, Guoqing
    Zhang, Qiang
    Tao, Jin
    Zhang, Yali
    Lin, Junliang
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 781
  • [7] Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning
    Sharma, Prakriti
    Leigh, Larry
    Chang, Jiyul
    Maimaitijiang, Maitiniyazi
    Caffe, Melanie
    [J]. SENSORS, 2022, 22 (02)
  • [8] Soil respiration estimation in desertified mining areas based on UAV remote sensing and machine learning
    Liu, Ying
    Lin, Jiaquan
    Yue, Hui
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3433 - 3448
  • [9] Soil respiration estimation in desertified mining areas based on UAV remote sensing and machine learning
    Ying Liu
    Jiaquan Lin
    Hui Yue
    [J]. Earth Science Informatics, 2023, 16 : 3433 - 3448
  • [10] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921