Numerical simulation and optimization of AC electrothermal microfluidic biosensor for COVID-19 detection through Taguchi method and artificial network

被引:15
|
作者
Kaziz, Sameh [1 ,2 ]
Ben Romdhane, Imed [3 ]
Echouchene, Fraj [3 ,4 ]
Gazzah, Mohamed Hichem [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Quantum & Stat Phys Lab, Environm Blvd, Monastir 5019, Tunisia
[2] Univ Tunis, Higher Natl Engn Sch Tunis, Taha Hussein Montfleury Blvd, Tunis 1008, Tunisia
[3] Univ Monastir, Fac Sci Monastir, Lab Elect & Microelect, Environm Blvd, Monastir 5019, Tunisia
[4] Univ Sousse, Higher Inst Appl Sci & Technol Soussse, Sousse, Tunisia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 01期
关键词
PROCESS PARAMETERS; IMMUNOASSAY; ENHANCEMENT; INFECTION; DEVICE;
D O I
10.1140/epjp/s13360-023-03712-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target antigen is strongly affected by process parameters. The purpose of this research was to optimize the performance of a microfluidic biosensor using two different approaches: Taguchi optimization and artificial neural network (ANN) optimization. Taguchi L8(2(5)) orthogonal array involving eight groups of experiments for five key parameters, which are microchannel shape, biosensor position, applied alternating current voltage, adsorption constant, and average inlet flow velocity, at two levels each, are performed to minimize the detection time of a biosensor excited by an alternating current electrothermal force. Signal to noise ratio (S/N) and analysis of variance were used to reach the optimal levels of process parameters and to demonstrate their percentage contributions, in terms of improved device response time. The principal results of this study showed that the Taguchi method was able to identify that the kinetic adsorption rate is the most influential parameter at 93% contribution, and the reaction surface position is the least influential parameter at 0.07% contribution. Also, the ANN model was able to accurately predict the optimal input values with a very low prediction error. Overall, the major conclusion of this study is both the Taguchi and ANN approaches can be effectively utilized to optimize the performance of a microfluidic biosensor. These advances have the potential to revolutionize the field of biosensing.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical simulation and optimization of AC electrothermal microfluidic biosensor for COVID-19 detection through Taguchi method and artificial network
    Sameh Kaziz
    Imed Ben Romdhane
    Fraj Echouchene
    Mohamed Hichem Gazzah
    The European Physical Journal Plus, 138
  • [2] Taguchi method: artificial neural network approach for the optimization of high-efficiency microfluidic biosensor for COVID-19
    Ben Romdhane, Imed
    Jemmali, Asma
    Kaziz, Sameh
    Echouchene, Fraj
    Alshahrani, Thamraa
    Belmabrouk, Hafedh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (04):
  • [3] Taguchi method: artificial neural network approach for the optimization of high-efficiency microfluidic biosensor for COVID-19
    Imed Ben Romdhane
    Asma Jemmali
    Sameh Kaziz
    Fraj Echouchene
    Thamraa Alshahrani
    Hafedh Belmabrouk
    The European Physical Journal Plus, 138
  • [4] Taguchi optimization of integrated flow microfluidic biosensor for COVID-19 detection
    Kaziz, Sameh
    Ben Mariem, Ibrahim
    Echouchene, Fraj
    Belkhiria, Maissa
    Belmabrouk, Hafedh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [5] Taguchi optimization of integrated flow microfluidic biosensor for COVID-19 detection
    Sameh Kaziz
    Ibrahim Ben Mariem
    Fraj Echouchene
    Maissa Belkhiria
    Hafedh Belmabrouk
    The European Physical Journal Plus, 137
  • [6] A MICROFLUIDIC BIOSENSOR FOR RAPID DETECTION OF COVID-19
    Muhsin, Sura A.
    He, Ying
    Al-Amidie, Muthana
    Sergovia, Karen
    Abdullah, Amjed
    Wang, Yang
    Alkorjia, Omar
    Hulsey, Robert A.
    Hunter, Gary L.
    Erdal, Zeynep
    Pletka, Ryan J.
    Hyleme, George S.
    Wan, Xiu-Feng
    Almasri, Mahmoud
    2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2023, : 433 - 436
  • [7] Numerical optimization of microfluidic biosensor detection time for the SARS-CoV-2 using the Taguchi method
    Ben Mariem, I
    Kaziz, S.
    Belkhiria, M.
    Echouchene, F.
    Belmabrouk, H.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (09) : 2621 - 2628
  • [8] Numerical optimization of microfluidic biosensor detection time for the SARS-CoV-2 using the Taguchi method
    Ibrahim Ben Mariem
    Sameh Kaziz
    Maissa Belkhiria
    Fraj Echouchene
    Hafedh Belmabrouk
    Indian Journal of Physics, 2023, 97 : 2621 - 2628
  • [9] A microfluidic biosensor architecture for the rapid detection of COVID-19
    Muhsin, Sura A.
    He, Ying
    Al-Amidie, Muthana
    Sergovia, Karen
    Abdullah, Amjed
    Wang, Yang
    Alkorjia, Omar
    Hulsey, Robert A.
    Hunter, Gary L.
    Erdal, Zeynep K.
    Pletka, Ryan J.
    George, Hyleme S.
    Wan, Xiu-Feng
    Almasri, Mahmoud
    ANALYTICA CHIMICA ACTA, 2023, 1275
  • [10] Numerical simulation of a microfluidic biosensor for C-reactive protein detection into a microchannel with considering electrothermal effect
    Hajji, Hassnia
    Kolsi, Lioua
    Ghachem, Kaouther
    Maatki, Chemseddine
    Borjini, Mohamed Naceur
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1649 - 1659