A machine learning approach for predicting perihematomal edema expansion in patients with intracerebral hemorrhage

被引:5
|
作者
Chen, Yihao [1 ]
Qin, Chenchen [2 ]
Chang, Jianbo [1 ]
Lyu, Yan [1 ]
Zhang, Qinghua [3 ]
Ye, Zeju [4 ]
Li, Zhaojian [5 ,6 ]
Tian, Fengxuan [7 ]
Ma, Wenbin [1 ]
Wei, Junji [1 ]
Feng, Ming [1 ]
Yao, Jianhua [2 ]
Wang, Renzhi [1 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Peking Union Med Coll, Dept Neurosurg, Beijing 100730, Peoples R China
[2] Tencent AI Lab, Bldg 12A 28th Floor,Ecol Pk, Shenzhen 518000, Peoples R China
[3] Shenzhen Nanshan Hosp, Dept Neurosurg, Shenzhen, Peoples R China
[4] Dongguan Peoples Hosp, Dept Neurosurg, Dongguan, Guangdong, Peoples R China
[5] Qingdao Univ, Dept Neurosurg, Affiliated Hosp, Qingdao, Peoples R China
[6] Qingdao Univ, Dept Med, Qingdao, Peoples R China
[7] Qinghai Prov Peoples Hosp, Dept Neurosurg, Xining, Qinghai, Peoples R China
基金
国家重点研发计划;
关键词
Cerebral hemorrhage; Brain edema; Machine learning; Computer-assisted diagnosis; NATURAL-HISTORY; RADIOMICS;
D O I
10.1007/s00330-022-09311-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesPreventing the expansion of perihematomal edema (PHE) represents a novel strategy for the improvement of neurological outcomes in intracerebral hemorrhage (ICH) patients. Our goal was to predict early and delayed PHE expansion using a machine learning approach. MethodsWe enrolled 550 patients with spontaneous ICH to study early PHE expansion, and 389 patients to study delayed expansion. Two imaging researchers rated the shape and density of hematoma in non-contrast computed tomography (NCCT). We trained a radiological machine learning (ML) model, a radiomics ML model, and a combined ML model, using data from radiomics, traditional imaging, and clinical indicators. We then validated these models on an independent dataset by using a nested 4-fold cross-validation approach. We compared models with respect to their predictive performance, which was assessed using the receiver operating characteristic curve. ResultsFor both early and delayed PHE expansion, the combined ML model was most predictive (early/delayed AUC values were 0.840/0.705), followed by the radiomics ML model (0.799/0.663), the radiological ML model (0.779/0.631), and the imaging readers (reader 1: 0.668/0.565, reader 2: 0.700/0.617). ConclusionWe validated a machine learning approach with high interpretability for the prediction of early and delayed PHE expansion. This new technique may assist clinical practice for the management of neurocritical patients with ICH.
引用
收藏
页码:4052 / 4062
页数:11
相关论文
共 50 条
  • [1] A machine learning approach for predicting perihematomal edema expansion in patients with intracerebral hemorrhage
    Yihao Chen
    Chenchen Qin
    Jianbo Chang
    Yan Lyu
    Qinghua Zhang
    Zeju Ye
    Zhaojian Li
    Fengxuan Tian
    Wenbin Ma
    Junji Wei
    Ming Feng
    Jianhua Yao
    Renzhi Wang
    [J]. European Radiology, 2023, 33 : 4052 - 4062
  • [2] Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage
    Li, Yu-Lun
    Chen, Chu
    Zhang, Li-Juan
    Zheng, Yi-Neng
    Lv, Xin-Ni
    Zhao, Li-Bo
    Li, Qi
    Lv, Fa-Jin
    [J]. WORLD NEUROSURGERY, 2023, 175 : E264 - E270
  • [3] Comparison of different noncontrast computed tomographic markers for predicting early perihematomal edema expansion in patients with intracerebral hemorrhage
    Li, Yu-Lun
    Zheng, Yi-Neng
    Zhang, Li-juan
    Li, Zuo-Qiao
    Deng, Lan
    Lv, Xin-Ni
    Li, Qi
    Lv, Fa-Jin
    [J]. JOURNAL OF CLINICAL NEUROSCIENCE, 2023, 112 : 1 - 5
  • [4] Measurement of Perihematomal Edema in Intracerebral Hemorrhage
    Urday, Sebastian
    Beslow, Lauren A.
    Goldstein, David W.
    Vashkevich, Anastasia
    Ayres, Alison M.
    Battey, Thomas W. K.
    Selim, Magdy H.
    Kimberly, W. Taylor
    Rosand, Jonathan
    Sheth, Kevin N.
    [J]. STROKE, 2015, 46 (04) : 1116 - +
  • [5] Rate of Perihematomal Edema Expansion Predicts Outcome After Intracerebral Hemorrhage
    Urday, Sebastian
    Beslow, Lauren A.
    Dai, Feng
    Zhang, Fan
    Battey, Thomas W. K.
    Vashkevich, Anastasia
    Ayres, Alison M.
    Leasure, Audrey C.
    Selim, Magdy H.
    Simard, J. Marc
    Rosand, Jonathan
    Kimberly, W. Taylor
    Sheth, Kevin N.
    [J]. CRITICAL CARE MEDICINE, 2016, 44 (04) : 790 - 797
  • [6] Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage
    Dhar, Rajat
    Falcone, Guido J.
    Chen, Yasheng
    Hamzehloo, Ali
    Kirsch, Elayna P.
    Noche, Rommell B.
    Roth, Kilian
    Acosta, Julian
    Ruiz, Andres
    Phuah, Chia-Ling
    Woo, Daniel
    Gill, Thomas M.
    Sheth, Kevin N.
    Lee, Jin-Moo
    [J]. STROKE, 2020, 51 (02) : 648 - 651
  • [7] Treatment Strategies to Attenuate Perihematomal Edema in Patients With Intracerebral Hemorrhage
    Kim, Hoon
    Edwards, Nancy J.
    Choi, Huimahn A.
    Chang, Tiffany R.
    Jo, Kwang Wook
    Lee, Kiwon
    [J]. WORLD NEUROSURGERY, 2016, 94 : 32 - 41
  • [8] Effect of Decompressive Craniectomy on Perihematomal Edema in Patients with Intracerebral Hemorrhage
    Fung, Christian
    Murek, Michael
    Klinger-Gratz, Pascal P.
    Fiechter, Michael
    Z'Graggen, Werner J.
    Gautschi, Oliver P.
    El-Koussy, Marwan
    Gralla, Jan
    Schaller, Karl
    Zbinden, Martin
    Arnold, Marcel
    Fischer, Urs
    Mattle, Heinrich P.
    Raabe, Andreas
    Beck, Juergen
    [J]. PLOS ONE, 2016, 11 (02):
  • [9] Perihematomal Edema After Intracerebral Hemorrhage in Patients With Active Malignancy
    Gusdon, Aaron M.
    Nyquist, Paul A.
    Torres-Lopez, Victor M.
    Leasure, Audrey C.
    Falcone, Guido J.
    Sheth, Kevin N.
    Sansing, Lauren H.
    Hanley, Daniel F.
    Malani, Rachna
    [J]. STROKE, 2020, 51 (01) : 129 - 136
  • [10] Perihematomal Edema Expansion Rate Predicts Functional Outcome in Deep Intracerebral Hemorrhage
    Grunwald, Zachary
    Urday, Sebastian
    Beslow, Lauren
    Vashkevich, Anastasia
    Ayres, Alison
    Greenberg, Steven
    Goldstein, Joshua
    Battey, Thomas
    Simard, Marc
    Rosand, Jonathan
    Kimberly, W.
    Sheth, Kevin
    [J]. NEUROLOGY, 2016, 86