Small Hankel operators between Bergman-type spaces in the unit ball

被引:2
|
作者
Yang, Wenwan [1 ]
Lin, Hanxing [2 ]
Yuan, Cheng [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[2] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou, Peoples R China
关键词
Small Hankel operators; Bergman-type spaces; Carleson measures; 32A36; 47B01; 47B38; DIRICHLET-TYPE SPACES; BESOV-SPACES; PROJECTIONS;
D O I
10.1080/17476933.2023.2226060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We utilize the (A alpha p</mml:msubsup>,q)-Carleson measure to investigate the bounded small Hankel operator hf alpha</mml:msubsup> acting between the Bergman-type space A alpha p</mml:msubsup> and A alpha q</mml:msubsup><overbar></mml:mover> on the complex unit ball Bn for some alpha <= -1. For n >= 2, and f is an element of H(Bn), we have the conclusions: <list list-type="order">Suppose alpha <= -1, max{1,-2 alpha -2}<p<infinity and pN+alpha>-1. Then hf alpha</mml:msubsup>:A alpha p</mml:msubsup>-> A alpha p<overbar></mml:mover> is bounded if and only if |RNf(z)|pd<mml:msub>vpN+alpha (z) is an (A alpha p,p)-Carleson measure.Suppose -n-1<<alpha><= -1, max{1,-2 alpha -2}<p<q<<infinity> and <disp-formula id="UM0001"><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gcov_a_2226060_um0001.gif"></graphic><mml:mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"><mml:mtr><mml:mtd>pN>max{<mml:mfrac>q-pp</mml:mfrac>(n+1+alpha)-2(alpha +1),<mml:mfrac>-p(alpha +1)p-1</mml:mfrac>}.</mml:mtd></mml:mtr></mml:mtable></disp-formula> Then hf alpha :A alpha p -> A alpha q<overbar></mml:mover> is bounded if and only if |RNf(z)|qd<mml:msub>vqN+alpha (z) is an (A alpha p,q)-Carleson measure.Suppose 1<q<p<<infinity>, alpha <= -1, N be a positive integer such that qN+alpha>-1. <list list-type="alpha-lower">If |RNf(z)|qd<mml:msub>vqN+alpha (z) is an (A alpha p,q)-Carleson measure, then hf alpha :A alpha p -> A alpha q<overbar></mml:mover> is bounded.Let kappa=<mml:mfrac>pqp-q</mml:mfrac> and kappa=<mml:mfrac>kappa kappa -1</mml:mfrac>. If alpha+(p-1)kappa ' N>-1 and hf alpha :A alpha p -> A alpha q<overbar></mml:mover> is bounded, then f is an element of A alpha kappa with f<mml:msub>A alpha kappa less than or similar to hf alpha .If |RNf(z)|qd<mml:msub>vqN+alpha (z) is an (A alpha p,q)-Carleson measure, then f is an element of A alpha kappa. But, there is an f is an element of A alpha kappa such that |RNf(z)|qd<mml:msub>vqN+alpha <mml:mo stretchy="false">(z<mml:mo stretchy="false">) is not an <mml:mo stretchy="false">(A alpha p<mml:mo>,q<mml:mo stretchy="false">)-Carleson measure.
引用
收藏
页码:1462 / 1483
页数:22
相关论文
共 50 条
  • [1] On Hankel operators between Bergman spaces on the unit ball
    Bonami, A
    Luo, L
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (03): : 815 - 828
  • [2] SCHATTEN CLASSES OF VOLTERRA OPERATORS ON BERGMAN-TYPE SPACES IN THE UNIT BALL
    Liu, Junming
    Yuan, Cheng
    Zeng, Honggang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3425 - 3439
  • [3] Hankel Operators Between Bergman Spaces with Variable Exponents on the Unit Ball of Cn
    Dieudonne, Agbor
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (03)
  • [4] Litte Hankel Operators Between Vector-Valued Bergman Spaces on the Unit Ball
    Bekolle, David
    Defo, Hugues Olivier
    Tchoundja, Edgar L.
    Wick, Brett D.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (03)
  • [5] Litte Hankel Operators Between Vector-Valued Bergman Spaces on the Unit Ball
    David Békollé
    Hugues Olivier Defo
    Edgar L. Tchoundja
    Brett D. Wick
    Integral Equations and Operator Theory, 2021, 93
  • [6] WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES
    Sharma, Ajay K.
    Sharma, Som Datt
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (03): : 465 - 474
  • [7] HANKEL-OPERATORS BETWEEN WEIGHTED BERGMAN SPACES IN THE BALL
    WALLSTEN, R
    ARKIV FOR MATEMATIK, 1990, 28 (01): : 183 - 192
  • [8] Duality for large Bergman-Orlicz spaces and Hankel operators between Bergman-Orlicz spaces on the unit ball
    Sehba, Benoit F.
    Tchoundja, Edgar L.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (11) : 1619 - 1644
  • [9] Hankel operators on the Bergman space of the unit ball
    Nowak, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2005 - 2012
  • [10] Small Hankel Operators on the Dirichlet-Type Spaces on the Unit Ball of Cn
    Peng Yan Hu
    Wen Jun Zhang
    Acta Mathematica Sinica, 2004, 20 : 261 - 272