Improving statistical projections of ocean dynamic sea-level change using pattern recognition techniques

被引:0
|
作者
Malagon-Santos, Victor [1 ]
Slangen, Aimee B. A. [1 ]
Hermans, Tim H. J. [1 ,2 ]
Dangendorf, Sonke [3 ]
Marcos, Marta [4 ]
Maher, Nicola [5 ,6 ,7 ]
机构
[1] NIOZ Royal Netherlands Inst Sea Res, Dept Estuarine & Delta Syst, POB 140, NL-4400 AC Yerseke, Netherlands
[2] Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Utrecht, Netherlands
[3] Tulane Univ, Dept River Coastal Sci & Engn, New Orleans, LA USA
[4] Univ Balear Isl CSIC UIB, Mediterranean Inst Adv Studies IMEDEA, Spanish Natl Res Council, Esporles, Spain
[5] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA
[6] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO USA
[7] Max Planck Inst Meteorol, Hamburg, Germany
关键词
IMPULSE-RESPONSE; MODEL; RISE; VARIABILITY;
D O I
10.5194/os-19-499-2023
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Regional emulation tools based on statistical relationships, such as pattern scaling, provide a computationally inexpensive way of projecting oceandynamic sea-level change for a broad range of climate change scenarios. Such approaches usually require a careful selection of one or more predictorvariables of climate change so that the statistical model is properly optimized. Even when appropriate predictors have been selected, spatiotemporaloscillations driven by internal climate variability can be a large source of statistical model error. Using pattern recognition techniques thatexploit spatial covariance information can effectively reduce internal variability in simulations of ocean dynamic sea level, significantly reducingrandom errors in regional emulation tools. Here, we test two pattern recognition methods based on empirical orthogonal functions (EOFs), namelysignal-to-noise maximizing EOF pattern filtering and low-frequency component analysis, for their ability to reduce errors in pattern scaling ofocean dynamic sea-level change. We use the Max Planck Institute Grand Ensemble (MPI-GE) as a test bed for both methods, as it is a type ofinitial-condition large ensemble designed for an optimal characterization of the externally forced response. We show that the two methods testedhere more efficiently reduce errors than conventional approaches such as a simple ensemble average. For instance, filtering only two realizations bycharacterizing their common response to external forcing reduces the random error by almost 60 %, a reduction that is only achieved by averagingat least 12 realizations. We further investigate the applicability of both methods to single-realization modeling experiments, including four CMIP5simulations for comparison with previous regional emulation analyses. Pattern filtering leads to a varying degree of error reduction depending onthe model and scenario, ranging from more than 20 % to about 70 % reduction in global-mean root mean squared error compared with unfilteredsimulations. Our results highlight the relevance of pattern recognition methods as a tool to reduce errors in regional emulation tools of oceandynamic sea-level change, especially when one or only a few realizations are available. Removing internal variability prior to tuning regionalemulation tools can optimize the performance of the statistical model, leading to substantial differences in emulated dynamic sea level compared tounfiltered simulations.
引用
收藏
页码:499 / 515
页数:17
相关论文
共 50 条
  • [1] What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?
    Couldrey, Matthew P.
    Gregory, Jonathan M.
    Dias, Fabio Boeira
    Dobrohotoff, Peter
    Domingues, Catia M.
    Garuba, Oluwayemi
    Griffies, Stephen M.
    Haak, Helmuth
    Hu, Aixue
    Ishii, Masayoshi
    Jungclaus, Johann
    Kohl, Armin
    Marsland, Simon J.
    Ojha, Sayantani
    Saenko, Oleg A.
    Savita, Abhishek
    Shao, Andrew
    Stammer, Detlef
    Suzuki, Tatsuo
    Todd, Alexander
    Zanna, Laure
    [J]. CLIMATE DYNAMICS, 2021, 56 (1-2) : 155 - 187
  • [2] What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?
    Matthew P. Couldrey
    Jonathan M. Gregory
    Fabio Boeira Dias
    Peter Dobrohotoff
    Catia M. Domingues
    Oluwayemi Garuba
    Stephen M. Griffies
    Helmuth Haak
    Aixue Hu
    Masayoshi Ishii
    Johann Jungclaus
    Armin Köhl
    Simon J. Marsland
    Sayantani Ojha
    Oleg A. Saenko
    Abhishek Savita
    Andrew Shao
    Detlef Stammer
    Tatsuo Suzuki
    Alexander Todd
    Laure Zanna
    [J]. Climate Dynamics, 2021, 56 : 155 - 187
  • [3] Sea-level change on a dynamic Earth
    Mitrovica, JX
    Mound, JE
    Pysklywec, RN
    Milne, GA
    [J]. PROBLEMS IN GEOPHYSICS FOR THE NEW MILLENNIUM, 2000, : 499 - 529
  • [4] Improving sea-level projections on the Northwestern European shelf using dynamical downscaling
    Hermans, Tim H. J.
    Tinker, Jonathan
    Palmer, Matthew D.
    Katsman, Caroline A.
    Vermeersen, Bert L. A.
    Slangen, Aimee B. A.
    [J]. CLIMATE DYNAMICS, 2020, 54 (3-4) : 1987 - 2011
  • [5] Improving sea-level projections on the Northwestern European shelf using dynamical downscaling
    Tim H. J. Hermans
    Jonathan Tinker
    Matthew D. Palmer
    Caroline A. Katsman
    Bert L. A. Vermeersen
    Aimée B. A. Slangen
    [J]. Climate Dynamics, 2020, 54 : 1987 - 2011
  • [6] Ocean model resolution dependence of Caribbean sea-level projections
    René M. van Westen
    Henk A. Dijkstra
    Carine G. van der Boog
    Caroline A. Katsman
    Rebecca K. James
    Tjeerd J. Bouma
    Olga Kleptsova
    Roland Klees
    Riccardo E. M. Riva
    D. Cornelis Slobbe
    Marcel Zijlema
    Julie D. Pietrzak
    [J]. Scientific Reports, 10
  • [7] Ocean model resolution dependence of Caribbean sea-level projections
    van Westen, Rene M.
    Dijkstra, Henk A.
    van der Boog, Carine G.
    Katsman, Caroline A.
    James, Rebecca K.
    Bouma, Tjeerd J.
    Kleptsova, Olga
    Klees, Roland
    Riva, Riccardo E. M.
    Slobbe, D. Cornelis
    Zijlema, Marcel
    Pietrzak, Julie D.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Ocean eddies strongly affect global mean sea-level projections
    van Westen, Rene M.
    Dijkstra, Henk A.
    [J]. SCIENCE ADVANCES, 2021, 7 (15)
  • [9] Patterns of Indian Ocean sea-level change in a warming climate
    Han, Weiqing
    Meehl, Gerald A.
    Rajagopalan, Balaji
    Fasullo, John T.
    Hu, Aixue
    Lin, Jialin
    Large, William G.
    Wang, Jih-wang
    Quan, Xiao-Wei
    Trenary, Laurie L.
    Wallcraft, Alan
    Shinoda, Toshiaki
    Yeager, Stephen
    [J]. NATURE GEOSCIENCE, 2010, 3 (08) : 546 - 550
  • [10] Patterns of Indian Ocean sea-level change in a warming climate
    Weiqing Han
    Gerald A. Meehl
    Balaji Rajagopalan
    John T. Fasullo
    Aixue Hu
    Jialin Lin
    William G. Large
    Jih-wang Wang
    Xiao-Wei Quan
    Laurie L. Trenary
    Alan Wallcraft
    Toshiaki Shinoda
    Stephen Yeager
    [J]. Nature Geoscience, 2010, 3 : 546 - 550