Kinetics and Mechanism of Selenium(IV) Oxidation by Aqueous Bromine Solution

被引:2
|
作者
Cseko, Gyorgy [1 ]
Nyitrai, Boglarka [1 ]
Horvath, Attila K. [1 ]
机构
[1] Univ Pecs, Fac Sci, Dept Gen & Inorgan Chem, H-7624 Pecs, Hungary
来源
ACS OMEGA | 2023年 / 8卷 / 17期
关键词
ACID REACTIONS; IODINE; EQUILIBRIUM; ION; TETRATHIONATE; HYDROLYSIS;
D O I
10.1021/acsomega.3c01497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bromine-selenite reaction at strongly acidic conditions was investigated by monitoring the absorbance-time traces at the isosbestic point of the bromine-tribromide system at a constant ionic strength (0.5 M adjusted by sodium perchlorate) and temperature. Despite the simplicity of the stoichiometry, the kinetics was found to be very complex. Although the formal kinetic orders of the reactants bromine and selenite are strictly 1, that of the hydrogen ion varies from -2 to less than -3 and notably depends on the initial bromide concentration as well. The bromide ion also inhibits the reaction, making the whole system as a sound example of efficient autoinhibition. We have clearly shown that the inhibitory effect of the bromide ion cannot be explained quantitatively by either exclusively considering the unreactivity of the tribromide ion over elemental bromine or driving the reaction via hypobromous acid formed from the well-known hydrolysis of bromine in aqueous solutions. Instead of that, bromonium ion transfer initiating equilibrium is suggested between the selenium(IV) and bromine species to produce bromide ion and SeO3Br- followed by the hydrolysis of this short-lived intermediate. This hydrolytic transformation was found to be catalytic with respect to hydroxide and bromide ions as well. We have also demonstrated that, among the wide variety of selenium species present in the acidic aqueous solution, the best result can be obtained by considering HSeO3- as the kinetically active species toward bromine. The proposed mechanism containing 10 acid-base equilibria with known equilibrium constants, the above-mentioned initiating equilibrium, and the hydrolysis of SeO3Br- is able to fit all 49 kinetic absorbance-traces simultaneously, taking into account properly the most important characteristics of the measured data at strongly acidic conditions. Furthermore, this kinetic model was further extended by the direct reactions of hypobromous acid with selenium(IV) species suggested previously with reasonably modified rate coefficients to describe the pH dependence of the apparent second-order rate coefficients over the pH = 1-13 range, providing a useful tool to predict more accurately the kinetic behavior of selenium(IV) species in water treatment process conditions.
引用
收藏
页码:15769 / 15780
页数:12
相关论文
共 50 条
  • [1] KINETICS AND MECHANISM OF OXIDATION OF GLYCEROL BY ALKALINE AQUEOUS BROMINE SOLUTION
    KRISHNA, B
    SRIVASTA.KN
    TRIPATHI, SR
    SINGH, B
    CHIMIE ANALYTIQUE, 1969, 51 (09): : 444 - &
  • [2] MECHANISM OF BROMINE OXIDATIONS .2. KINETICS OF OXIDATION OF ISOBUTYRALDEHYDE BY BROMINE IN AQUEOUS SOLUTION
    KUDESIA, VP
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1970, 79 (5-6): : 269 - &
  • [3] KINETICS AND MECHANISM OF OXIDATION OF DIMETHYL SULFOXIDE WITH BROMINE IN AQUEOUS-SOLUTION
    COX, BG
    GIBSON, A
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1973, (10): : 1355 - 1358
  • [4] KINETICS AND MECHANISM OF THE OXIDATION OF HYDROXYLAMINE BY AQUEOUS BROMINE
    BECKWITH, RC
    COOPER, JN
    MARGERUM, DW
    INORGANIC CHEMISTRY, 1994, 33 (22) : 5144 - 5150
  • [5] KINETICS AND MECHANISM OF OXIDATION OF SELENIUM(IV) BY PERMANGANATE ION IN AQUEOUS PERCHLORATE SOLUTIONS
    HASSAN, RM
    ELGAIAR, SA
    ELSUMMAN, AE
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1993, 58 (03) : 538 - 546
  • [6] KINETICS AND MECHANISM OF THE OXIDATION OF SELENIUM(IV) BY PERMANGANATE
    NADIMPALLI, S
    RALLABANDI, R
    DIKSHITULU, LSA
    TRANSITION METAL CHEMISTRY, 1993, 18 (05) : 510 - 514
  • [7] OXIDATION OF SELENIUM(IV) BY PERIODATE - KINETICS AND MECHANISM
    SRIDEVI, N
    BABU, RR
    VANI, P
    DIKSHITULU, LSA
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 1990, 29 (01): : 63 - 66
  • [8] Kinetics and mechanism of oxidation of amino acids by aqueous bromine
    Nalwaya, N
    Chaturvedi, G
    Dashora, Y
    Hiran, BL
    ASIAN JOURNAL OF CHEMISTRY, 2001, 13 (04) : 1396 - 1404
  • [10] Kinetics and mechanism of the oxidation of diols by bromine in acid solution
    Vinita Sharma
    Pradeep K Sharma
    Kalyan K Banerji
    Proceedings / Indian Academy of Sciences, 1998, 110 (1): : 65 - 73