On the strength of recursive McCormick relaxations for binary polynomial optimization

被引:7
|
作者
Khajavirad, Aida [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
关键词
Binary polynomial optimization; Recursive McCormick relaxations; Multilinear polytope; Extended flower relaxation; Cutting planes; GLOBAL OPTIMIZATION; PROGRAMS; CONVEX;
D O I
10.1016/j.orl.2023.01.009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recursive McCormick relaxations are among the most popular convexification techniques for binary polynomial optimization. It is well-understood that both the quality and the size of these relaxations depend on the recursive sequence and finding an optimal sequence amounts to solving a difficult combinatorial optimization problem. We prove that any recursive McCormick relaxation is implied by the extended flower relaxation, a linear programming relaxation, which for binary polynomial optimization problems with fixed degree can be solved in strongly polynomial time.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [1] Doubly nonnegative relaxations for quadratic and polynomial optimization problems with binary and box constraints
    Sunyoung Kim
    Masakazu Kojima
    Kim-Chuan Toh
    [J]. Mathematical Programming, 2022, 193 : 761 - 787
  • [2] Doubly nonnegative relaxations for quadratic and polynomial optimization problems with binary and box constraints
    Kim, Sunyoung
    Kojima, Masakazu
    Toh, Kim-Chuan
    [J]. MATHEMATICAL PROGRAMMING, 2022, 193 (02) : 761 - 787
  • [3] Differentiable McCormick relaxations
    Khan, Kamil A.
    Watson, Harry A. J.
    Barton, Paul I.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (04) : 687 - 729
  • [4] Multivariate McCormick relaxations
    Tsoukalas, A.
    Mitsos, A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (2-3) : 633 - 662
  • [5] Generalized McCormick relaxations
    Joseph K. Scott
    Matthew D. Stuber
    Paul I. Barton
    [J]. Journal of Global Optimization, 2011, 51 : 569 - 606
  • [6] Multivariate McCormick relaxations
    A. Tsoukalas
    A. Mitsos
    [J]. Journal of Global Optimization, 2014, 59 : 633 - 662
  • [7] Generalized McCormick relaxations
    Scott, Joseph K.
    Stuber, Matthew D.
    Barton, Paul I.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (04) : 569 - 606
  • [8] Infeasible Path Global Flowsheet Optimization Using McCormick Relaxations
    Bongartz, Dominik
    Mitsos, Alexander
    [J]. 27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2017, 40A : 631 - 636
  • [9] Differentiable McCormick relaxations
    Kamil A. Khan
    Harry A. J. Watson
    Paul I. Barton
    [J]. Journal of Global Optimization, 2017, 67 : 687 - 729
  • [10] EXACT SEMIDEFINITE PROGRAMMING RELAXATIONS WITH TRUNCATED MOMENT MATRIX FOR BINARY POLYNOMIAL OPTIMIZATION PROBLEMS
    Sakaue, Shinsaku
    Takeda, Akiko
    Kim, Sunyoung
    Ito, Naoki
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 565 - 582