Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV

被引:17
|
作者
Zhang, Fayong [1 ]
Li, Rui [2 ]
Gong, Wenyin [2 ,3 ]
机构
[1] China Univ Geosci, Coll Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexible job shop scheduling; Automatic guided vehicle; Energy-aware scheduling; Memetic algorithm; Deep reinforcement learning; GENETIC ALGORITHM; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1016/j.cie.2024.109917
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The integration of manufacturing and logistics scheduling issues in shop operations has garnered considerable attention. Concurrently, escalating concerns about global warming have propelled the emergence of green manufacturing as a critical challenge. Notably, extant research in this domain lacks an incorporation of green metrics within the framework of manufacturing and logistics -integrated scheduling. Furthermore, the determination of a critical block remains a challenging aspect, with an absence of consideration for a neighborhood structure founded on the critical block. Moreover, prior endeavors have predominantly relied on Q -learning to augment evolutionary algorithms, a strategy criticized for its limited learning capacity. Consequently, this study addresses these gaps by presenting an energy -efficient flexible job Shop scheduling with multi -autonomous guided vehicles (EFJS-AGV). The primary objectives are the simultaneous minimization of makespan and total energy consumption. To tackle this NP -hard problem, a deep Q -network -based memetic algorithm is proposed. The devised algorithm incorporates several distinctive features. Firstly, the strength Pareto evolutionary algorithm (SPEA2) is employed to swiftly explore the objective space, enhancing convergence and diversity. Secondly, four distinct local search operators based on critical paths and blocks are devised to efficiently reduce makespan. Thirdly, deep reinforcement learning is harnessed to understand the interplay between solutions and action selection. This understanding aids the evolutionary algorithm in selecting the most optimal operator. The efficacy of the proposed algorithm is rigorously evaluated through a comparative analysis with five state-of-the-art algorithms. The assessment is conducted on two benchmark datasets encompassing 20 instances. The numerical experimental results affirm the effectiveness of the proposed enhancements and algorithms. Furthermore, the superior performance of the proposed algorithm in addressing the EFJS-AGV substantiates its robustness and applicability.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
    Meng, Leilei
    Cheng, Weiyao
    Zhang, Biao
    Zou, Wenqiang
    Fang, Weikang
    Duan, Peng
    SENSORS, 2023, 23 (08)
  • [2] Co-Evolution With Deep Reinforcement Learning for Energy-Aware Distributed Heterogeneous Flexible Job Shop Scheduling
    Li, Rui
    Gong, Wenyin
    Wang, Ling
    Lu, Chao
    Dong, Chenxin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (01): : 201 - 211
  • [3] A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling
    Wang, Jing-Jing
    Wang, Ling
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (03) : 461 - 475
  • [4] Dynamic flexible job shop scheduling algorithm based on deep reinforcement learning
    Zhao, Tianrui
    Wang, Yanhong
    Tan, Yuanyuan
    Zhang, Jun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5099 - 5104
  • [5] Energy-aware scheduling for spark job based on deep reinforcement learning in cloud
    Li, Hongjian
    Lu, Liang
    Shi, Wenhu
    Tan, Gangfan
    Luo, Hao
    COMPUTING, 2023, 105 (08) : 1717 - 1743
  • [6] Energy-aware scheduling for spark job based on deep reinforcement learning in cloud
    Hongjian Li
    Liang Lu
    Wenhu Shi
    Gangfan Tan
    Hao Luo
    Computing, 2023, 105 : 1717 - 1743
  • [7] Deep reinforcement learning-based memetic algorithm for solving dynamic distributed green flexible job shop scheduling problem with finite transportation resources
    Zhou, Xinxin
    Wang, Fuyu
    Wu, Bin
    Li, Yan
    Shen, Nannan
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 94
  • [8] A Deep Reinforcement Advantage Actor-Critic-Based Co-Evolution Algorithm for Energy-Aware Distributed Heterogeneous Flexible Job Shop Scheduling
    Xu, Hua
    Tao, Juntai
    Huang, Lingxiang
    Zhang, Chenjie
    Zheng, Jianlu
    PROCESSES, 2025, 13 (01)
  • [9] Dynamic flexible job shop scheduling based on deep reinforcement learning
    Yang, Dan
    Shu, Xiantao
    Yu, Zhen
    Lu, Guangtao
    Ji, Songlin
    Wang, Jiabing
    He, Kongde
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [10] Deep Reinforcement Learning-Based Job Shop Scheduling of Smart Manufacturing
    Elsayed, Eman K.
    Elsayed, Asmaa K.
    Eldahshan, Kamal A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5103 - 5120