Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning

被引:27
|
作者
Abdollahzadeh, Benyamin [1 ]
Khodadadi, Nima [2 ]
Barshandeh, Saeid [3 ]
Trojovsky, Pavel [1 ]
Gharehchopogh, Farhad Soleimanian [4 ]
El-kenawy, El-Sayed M. [5 ]
Abualigah, Laith [6 ,7 ,8 ]
Mirjalili, Seyedali [9 ,10 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
[2] Univ Miami, Dept Civil & Architectural Engn, Coral Gables, FL 33146 USA
[3] Afagh Higher Educ Inst, Sch Engn, Dept Comp Sci, Orumiyeh, Iran
[4] Islamic Azad Univ, Dept Comp Engn, Urmia Branch, Orumiyeh, Iran
[5] Delta Higher Inst Engn & Technol, Dept Commun & Elect, Mansoura 35111, Egypt
[6] Al Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman 19328, Jordan
[7] Univ Tabuk, Comp Sci Dept, Dept Biol, Tabuk 47913, Saudi Arabia
[8] Al al Bayt Univ, Comp Sci Dept, Mafraq 25113, Jordan
[9] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Adelaide, Australia
[10] Obuda Univ, Res & Innovat Ctr, H-1034 Budapest, Hungary
关键词
Optimization; Metaheuristic algorithm; Puma optimization algorithm; Machine learning; Global optimization; Automatic phase change; COUGAR; EVOLUTION; HABITS;
D O I
10.1007/s10586-023-04221-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm's performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po.
引用
收藏
页码:5235 / 5283
页数:49
相关论文
共 50 条
  • [1] The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization
    Zitouni, Farouq
    Harous, Saad
    Belkeram, Abdelghani
    Hammou, Lokman Elhakim Baba
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 2513 - 2553
  • [2] The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization
    Farouq Zitouni
    Saad Harous
    Abdelghani Belkeram
    Lokman Elhakim Baba Hammou
    [J]. Arabian Journal for Science and Engineering, 2022, 47 : 2513 - 2553
  • [3] WEIGHTED VERTICES OPTIMIZER (WVO): A NOVEL METAHEURISTIC OPTIMIZATION ALGORITHM
    Dolatabadi, Soheil
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (04): : 461 - 479
  • [4] Frigatebird optimizer: a novel metaheuristic algorithm
    School of Tourism, Huangshan University, Anhui, Huangshan, China
    [J]. Phys Scr, 2024, 12
  • [5] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Jeffrey O. Agushaka
    Absalom E. Ezugwu
    Laith Abualigah
    [J]. Neural Computing and Applications, 2023, 35 : 4099 - 4131
  • [6] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Azizi, Mahdi
    Aickelin, Uwe
    Khorshidi, Hadi A.
    Shishehgarkhaneh, Milad Baghalzadeh
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 4099 - 4131
  • [8] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Mahdi Azizi
    Uwe Aickelin
    Hadi A. Khorshidi
    Milad Baghalzadeh Shishehgarkhaneh
    [J]. Scientific Reports, 13 (1)
  • [9] The OX Optimizer: A Novel Optimization Algorithm and Its Application in Enhancing Support Vector Machine Performance for Attack Detection
    Al Hwaitat, Ahmad K.
    Fakhouri, Hussam N.
    [J]. SYMMETRY-BASEL, 2024, 16 (08):
  • [10] Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Sallam, Karam M.
    Chakrabortty, Ripon K.
    [J]. MATHEMATICS, 2022, 10 (19)