Mechanical properties assessment of a 3D printed composite under torsional and perpendicular stress

被引:3
|
作者
Parreira Lovo, Joao Fiore [1 ]
Neto, Vicente Gerlin [2 ,3 ]
Piedade, Lucas Pereira [4 ]
Massa, Renan Cesar [3 ]
Pintao, Carlos Alberto [4 ]
Foschini, Cesar Renato [5 ]
Fortulan, Carlos Alberto [1 ]
机构
[1] Univ Sao Paulo, Dept Engn Mecan, Escola Engn Sao Carlos, Sao Carlos, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Birigui, Sao Paulo, Brazil
[3] Univ Estadual Paulista, Fac Engn, Dept Engn Mecan, Campus Bauru, Bauru, SP, Brazil
[4] Univ Estadual Paulista, Fac Ciencias, Dept Fis, Campus Bauru, Bauru, SP, Brazil
[5] Sao Paulo State Univ UNESP, Bauru Sch Engn, Dept Mech Engn, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Additive manufacturing; Fused deposition modeling; FDM; Material extrusion; Mechanical properties; Torsion test; DESIGN;
D O I
10.1108/RPJ-03-2022-0067
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose This paper aims to evaluate the resin infiltration influence on the mechanical properties of components 3D printed by the material extrusion-based additive manufacturing (AM), also known as fused deposition modeling and commonly uses the acrylonitrile butadiene styrene (ABS) as depositing material. Improvements in their mechanical properties are desirable due failure resulting from the extrusion process. In this way, resin infiltration is considered a candidate solution to enhance 3D printed components' strength. Design/methodology/approach The mechanical properties of AM samples produced with and without the resin infiltration were assessed under torsion, tensile and flexural stresses. Torsional tests are rarely found applied for this case, an alternative torsion test developed by one of the authors was used. The torsion modulus (G) is obtained without the Poisson's ratio, which is usually unknown for recently made composites. Scanning electron microscopy was also done to verify the resin infiltration on the samples. Findings Results demonstrated that the resin infiltration on ABS can improve the mechanical properties of samples compared to non-infiltrated. The tensile and bending strength increased more than 6%. Both Young's and torsion modulus also presented a significant increase. The samples did not present any considerable change in their weight property. Originality/value This paper discusses on resin infiltration on print ABS, as to produce a composite material, enhancing ABS properties without gaining weight. This paper also used the torsion modulus instead of the common approach of bringing only tensile and flexure strength.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Mechanical properties of 3D printed concrete components: A review
    Liu, Ke
    Takasu, Koji
    Jiang, Jinming
    Zu, Kun
    Gao, Weijun
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2023, 16
  • [32] Mechanical properties of 3D printed concrete in hot temperatures
    Alchaar, Aktham S.
    Al-Tamimi, Adil K.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 266
  • [33] Influence of structure on mechanical properties of 3D printed objects
    Galeta, Tomislav
    Raos, Pero
    Stojsic, Josip
    Paksi, Ivana
    INTERNATIONAL CONFERENCE ON MANUFACTURING ENGINEERING AND MATERIALS, ICMEM 2016, 2016, 149 : 100 - 104
  • [34] Characterization of 3D printed ABS specimens under static and cyclic torsional loadings
    Ferreira, Carla M.
    Vicente, Carlos M. S.
    Sardinha, Manuel
    Leite, Marco
    Reis, Luis
    SECOND EUROPEAN CONFERENCE ON THE STRUCTURAL INTEGRITY OF ADDITIVELY MANUFACTURED MATERIALS, 2021, 34 : 205 - 210
  • [35] 3D Printing under High Ambient Pressures and Improvement of Mechanical Properties of Printed Parts
    Shaik, Yousuf Pasha
    Schuster, Jens
    Katherapalli, Harshavardhan Reddy
    Shaik, Aarif
    JOURNAL OF COMPOSITES SCIENCE, 2022, 6 (01):
  • [36] Investigating Shrinkage and Mechanical Properties of 3D Printed Concretes Under Different Curing Conditions
    Givkashi, Mohammad Rasul
    Moodi, Faramarz
    Ramezanianpour, Amir Mohammad
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2025,
  • [37] Effect of titanium dioxide on the mechanical properties of 3D printed short carbon-fibers composite
    Almeshari, Bandar
    Junaedi, Harri
    Baig, Muneer
    Almajid, Abdulhakim
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 8590 - 8597
  • [38] Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon composite unit structures
    Alarifi, Ibrahim M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 656 - 669
  • [39] Mechanical assessment of concrete - Steel bonding in 3D printed elements
    Baz, Bilal
    Aouad, Georges
    Leblond, Philippe
    Al-Mansouri, Omar
    D'hondt, Melody
    Remond, Sebastien
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 256
  • [40] Mechanical properties and microstructures of 3D printed bulk cordierite parts
    Chen, Zhangwei
    Liu, Chengbo
    Li, Junjie
    Zhu, Junyi
    Liu, Yu
    Lao, Changshi
    Feng, Jun
    Jiang, Mingguang
    Liu, Changyong
    Wang, Pei
    Li, Yang
    CERAMICS INTERNATIONAL, 2019, 45 (15) : 19257 - 19267