Systematic literature review: Quantum machine learning and its applications

被引:12
|
作者
Peral-Garcia, David [1 ]
Cruz-Benito, Juan [2 ]
Garcia-Penalvo, Francisco Jose [3 ]
机构
[1] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab ESALAB, Plaza Caidos S-N, Salamanca 37008, Spain
[2] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[3] Univ Salamanca, Res Inst Educ Sci, Dept Comp & Automat, GRIAL Res Grp, Paseo Canalejas 169, Salamanca 37008, Spain
关键词
Quantum machine learning; Quantum computing; Systematic literature review; NEURAL-NETWORKS; MODEL;
D O I
10.1016/j.cosrev.2024.100619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum physics has changed the way we understand our environment, and one of its branches, quantum mechanics, has demonstrated accurate and consistent theoretical results. Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles (photons, electrons, etc.) for subsequent use in performing calculations, as well as for large-scale information processing. These advantages are achieved through the use of quantum features, such as entanglement or superposition. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, scientific challenges are impossible to perform by classical computation due to computational complexity (more bytes than atoms in the observable universe) or the time it would take (thousands of years), and quantum computation is the only known answer. However, current quantum devices do not have yet the necessary qubits and are not fault -tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning, finance, or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a review of the literature published between 2017 and 2023 to identify, analyze, and classify the different types of algorithms used in quantum machine learning and their applications. The methodology follows the guidelines related to Systematic Literature Review methods, such as the one proposed by Kitchenham and other authors in the software engineering field. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms and shows their implementation using computational quantum circuits or ansatzs. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k -nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. One of the most relevant applications in the machine learning field is image classification. Many articles, especially within the classification, try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in quantum hardware is required for this potential to be achieved since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [1] Machine Learning Applications in Baseball: A Systematic Literature Review
    Koseler, Kaan
    Stephan, Matthew
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 745 - 763
  • [2] A systematic literature review of machine learning applications in IoT
    Gherbi, Chirihane
    Senouci, Oussama
    Harbi, Yasmine
    Medani, Khedidja
    Aliouat, Zibouda
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (11)
  • [3] Applications of machine learning to BIM: A systematic literature review
    Zabin, Asem
    Gonzalez, Vicente A.
    Zou, Yang
    Amor, Robert
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [4] Machine learning applications in production lines: A systematic literature review
    Kang, Ziqiu
    Catal, Cagatay
    Tekinerdogan, Bedir
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 149
  • [5] Quantum Machine Learning Applications in the Biomedical Domain: A Systematic Review
    Maheshwari, Danyal
    Garcia-Zapirain, Begonya
    Sierra-Sosa, Daniel
    IEEE ACCESS, 2022, 10 : 80463 - 80484
  • [6] Machine learning from crowds: A systematic review of its applications
    Rodrigo, Enrique G.
    Aledo, Juan A.
    Gamez, Jose A.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (02)
  • [7] A Systematic Literature Review of Machine Learning Applications for Port's Operations
    Mekkaoui, Sara E.
    Benabbou, Loubna
    Berrado, Abdelaziz
    GOL'20: 2020 5TH INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL), 2020, : 28 - 32
  • [8] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [9] Systematic Literature Review on Machine Learning and its Impact on APIs Deployment
    Valdivia, Jose Rojas
    Gamboa-Cruzado, Javier
    de la Cruz Velez de Villa, Percy
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 1107 - 1124
  • [10] Machine learning and automated systematic literature review: a systematic review
    Tsunoda, Denise Fukumi
    da Conceicao Moreira, Paulo Sergio
    Ribeiro Guimaraes, Andre Jose
    REVISTA TECNOLOGIA E SOCIEDADE, 2020, 16 (45): : 337 - 354