Microstructure of Alkali-Activated Slag in Ultralow Temperature Environments

被引:1
|
作者
Liu, Leping [1 ]
Hong, Yao [1 ]
Xu, Yue [1 ]
Li, Yuanyuan [1 ]
He, Yan [2 ,3 ]
机构
[1] Nanning Normal Univ, Coll Chem & Mat, Guangxi Key Lab Nat Polymer Chem & Phys, 175 Mingxiudong Rd, Nanning 530001, Guangxi, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
[3] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc Int, 100 Daxuedong Rd, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Alkali-activated slag (AAS) material; Alkali activators; Freeze-thaw cycling; Microstructure; C-S-H; BLAST-FURNACE SLAG; FLY-ASH; PHASE EVOLUTION; HYDRATION PRODUCTS; PART I; CEMENT; GEOPOLYMERS; DURABILITY; SHRINKAGE;
D O I
10.1061/JMCEE7.MTENG-16493
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the changes in the phase and microstructure of alkali-activated slag (AAS) in ultralow-temperature environments (-170 degrees C) was experimentally studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric (TG), scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS), Si29 magic-angle spinning nuclear magnetic resonance (MAS NMR), and pore structure. The results show that as the modulus of water glass increased, the mass loss of AAS after the ultralow-temperature freeze-thaw cycles (ULT-FTC) decreased, the freeze-thaw resistance increased. The ULT-FTC caused the internal structure of the AAS samples using different activators to slip and rearrange. Partial calcium-(alumina)-silicate-hydrate gel [C (A) S H] gel was decalcified. The gel structure formed using 2.0 M water glass as the activator was the most stable. The dense structure with a lower Ca/Si ratio enables the AAS to maintain a relatively stable microstructure after undergoing ULT-FTC.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Influence of high temperature on microstructure of alkali-activated slag cement pastes
    Fu, B. (fobofobo@163.com), 1600, Huazhong University of Science and Technology (41):
  • [2] Strength evolution and microstructure of alkali-activated ultra-fine slag in low-temperature environments
    Yang, Hong
    Wang, Hailong
    Li, Jiangshan
    Zhang, Zhaorong
    Huang, Xiao
    Xue, Qiang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 435
  • [3] Alkali-activated slag: hydration process and development of microstructure
    Wang, SD
    ADVANCES IN CEMENT RESEARCH, 2000, 12 (04) : 163 - 172
  • [4] Hydration Behaviour and Early Microstructure of Alkali-Activated Slag Binder at Low Temperature
    Yang K.
    Yang Y.
    Li X.
    Zhao Z.
    Wu F.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (05): : 993 - 1000and1015
  • [5] Influence of ferronickel slag on the reaction kinetics and microstructure of alkali-activated slag
    Cao, Ruilin
    Zhang, Shunquan
    Jia, Zijian
    Chen, Chun
    Zhang, Zuhua
    Banthia, Nemkumar
    Gao, Yueyi
    Zhang, Yamei
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [6] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [7] Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review
    Fu, Qiang
    Bu, Mengxin
    Zhang, Zhaorui
    Xu, Wenrui
    Yuan, Qiang
    Niu, Ditao
    ENGINEERING, 2023, 20 : 162 - 179
  • [8] Hydration properties and microstructure characteristics of alkali-activated steel slag
    Sun, Jianwei
    Zhang, Zengqi
    Zhuang, Shiyu
    He, Wei
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 241
  • [9] Effect of magnesia on properties and microstructure of alkali-activated slag cement
    Fang, Yong-hao
    Liu, Jun-feng
    Chen, Yi-qun
    WATER SCIENCE AND ENGINEERING, 2011, 4 (04) : 463 - 469