Fisher Information as General Metrics of Quantum Synchronization

被引:3
|
作者
Shen, Yuan [1 ]
Soh, Hong Yi [2 ]
Kwek, Leong-Chuan [1 ,2 ,3 ,4 ]
Fan, Weijun [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Block S2 1,50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Natl Inst Educ, 1 Nanyang Walk, Singapore 637616, Singapore
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] CNRS UNS NUS NTU Int Joint Res Unit, MajuLab, UMI 3654, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
quantum synchronization; Fisher information; quantum information theory; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DISTRIBUTIONS; DYNAMICS; QUTIP; VAN;
D O I
10.3390/e25081116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum synchronization has emerged as a crucial phenomenon in quantum nonlinear dynamics with potential applications in quantum information processing. Multiple measures for quantifying quantum synchronization exist. However, there is currently no widely agreed metric that is universally adopted. In this paper, we propose using classical and quantum Fisher information (FI) as alternative metrics to detect and measure quantum synchronization. We establish the connection between FI and quantum synchronization, demonstrating that both classical and quantum FI can be deployed as more general indicators of quantum phase synchronization in some regimes where all other existing measures fail to provide reliable results. We show advantages in FI-based measures, especially in 2-to-1 synchronization. Furthermore, we analyze the impact of noise on the synchronization measures, revealing the robustness and susceptibility of each method in the presence of dissipation and decoherence. Our results open up new avenues for understanding and exploiting quantum synchronization.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dissipative quantum Fisher information for a general Liouvillian parametrized process
    Peng, Jia-Xin
    Zhu, Baiqiang
    Zhang, Weipin
    Zhang, Keye
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [2] Local quantum Fisher information and local quantum uncertainty for general X states
    Yurischev, Mikhail A.
    Haddadi, Saeed
    PHYSICS LETTERS A, 2023, 476
  • [3] General Expressions for the Quantum Fisher Information Matrix with Applications to Discrete Quantum Imaging
    Fiderer, Lukas J.
    Tufarelli, Tommaso
    Piano, Samanta
    Adesso, Gerardo
    PRX QUANTUM, 2021, 2 (02):
  • [4] Maximal quantum Fisher information for general su(2) parametrization processes
    Jing, Xiao-Xing
    Liu, Jing
    Xiong, Heng-Na
    Wang, Xiaoguang
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [5] ON COVARIANCE AND QUANTUM FISHER INFORMATION
    Luo, S.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) : 329 - U151
  • [6] Continuity of the quantum Fisher information
    Rezakhani, A. T.
    Hassani, M.
    Alipour, S.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [7] Quantum Fisher information with coherence
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis
    Englert, Berthold-Georg
    OPTICA, 2019, 6 (11): : 1437 - 1440
  • [8] Quantum interference and Fisher information
    Hradil, Z
    Rehácek, J
    PHYSICS LETTERS A, 2005, 334 (04) : 267 - 272
  • [9] On the realization of quantum Fisher information
    Saha, Aparna
    Talukdar, B.
    Chatterjee, Supriya
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
  • [10] INTRODUCTION TO QUANTUM FISHER INFORMATION
    Petz, D.
    Ghinea, C.
    QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 27 : 261 - 281