To satisfy the new requirements brought by the intelligent development of high-speed railways, future railway mobile networks based on the Fifth Generation (5G) wireless technologies will apply broadband millimeter wave bands to enhance the transmission capability. Therefore, in this paper, considering the transmission requirements and scenario characteristics of high-speed railways, the problems of millimeter wave communications in network coverage robustness, mobility support capability, link stability and management are analyzed. Then, to guarantee the network coverage while improving the transmission capacity, future highspeed railway wireless network architecture based on the integration of conventional sub-6 GHz and millimeter wave bands is discussed, where the omni-directional sub-6 GHz bands provide robust coverage, and the directional millimeter wave communications improve transmission rate. Finally, under this network architecture, this paper investigates how to employ deep learning algorithms to predict the service characteristics and propagation environments, and make decisions for radio resource allocation, beam alignment, and handover optimization for sub-6 GHz and millimeter wave bands, to realize eventually the high reliability, low latency, and large capacity for the future high-speed railway mobile systems.