Effects of AlN addition into AISI 316L on melt pool stability and microstructural evolution during laser powder bed fusion

被引:8
|
作者
Lee, Seung Hoon [1 ]
Chung, Seong Gyu [1 ]
Kim, Hyoung Seop [1 ,2 ,3 ]
Cho, Jung-Wook [1 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, Pohang 37673, South Korea
[2] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[3] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Laser powder bed fusion; Melt pool reduction; Inclusion characteristics; Alloy design; AUSTENITIC STAINLESS-STEEL; SURFACE-TENSION; OXIDE; NANOCOMPOSITES; ALUMINUM; NITROGEN; METALS; GRAIN; FLOW; PRECIPITATION;
D O I
10.1016/j.msea.2023.145311
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
316L stainless steel that was modified by addition of reducing agent was manufactured by laser powder bed fusion using 316L powder that included 1 wt% Aluminum nitride (AlN), named 316L+AlN and compared with the as-built 316L stainless steel that was manufactured using only 316L powder. AlN addition diminished the oxygen content from 468 ppm (316L) to 244 ppm (316L+AlN), but increased the nitrogen content from 842 ppm (316L) to 1293 ppm (316L+AlN). Reduction behavior was faster in 316L+AlN steel than in 316L steel. Epitaxial grains were larger in 316L+AlN steel than in 316L steel within the different textural orientations between two different sets; this difference correlated well with the shape and temperature distribution of the melt pool. The inclusions in 316L+AlN steel were alumina, not nitride; this result means that nitride was supersaturated. The yield strength was increased from 485.4 MPa to 583.2 MPa when 1 wt% of AlN was added in 316L. 316L+AlN steel was stronger than 316L steel, primarily because of increased dislocation density in 316L+AlN steel.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Melt Pool characteristics on surface roughness and printability of 316L stainless steel in laser powder bed fusion
    Zhang, Tianyu
    Yuan, Lang
    RAPID PROTOTYPING JOURNAL, 2024,
  • [2] Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
    Zhang, Zilong
    Zhang, Tianyu
    Sun, Can
    Karna, Sivaji
    Yuan, Lang
    MICROMACHINES, 2024, 15 (02)
  • [3] Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
    Juan Trejos-Taborda
    Luis Reyes-Osorio
    Carlos Garza
    Patricia del Carmen Zambrano-Robledo
    Omar Lopez-Botello
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 3947 - 3961
  • [4] Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
    Trejos-Taborda, Juan
    Reyes-Osorio, Luis
    Garza, Carlos
    del Carmen Zambrano-Robledo, Patricia
    Lopez-Botello, Omar
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (5-6): : 3947 - 3961
  • [5] Investigation on the characteristics of porosity, melt pool in 316L stainless steel manufactured by laser powder bed fusion
    Liu, Cheng-song
    Xue, Xiao
    Wang, Yong
    Zhang, Hua
    Li, Jie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 1832 - 1844
  • [6] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Ali Eliasu
    Aleksander Czekanski
    Solomon Boakye-Yiadom
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 2651 - 2669
  • [7] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Eliasu, Ali
    Czekanski, Aleksander
    Boakye-Yiadom, Solomon
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (9-10): : 2651 - 2669
  • [8] Laser powder bed fusion of AISI 316L lattice structures for biomedical applications
    Lannunziata E.
    Saboori A.
    Galati M.
    Iuliano L.
    Materials Today: Proceedings, 2022, 70 : 345 - 351
  • [9] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [10] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)