Deep Reinforcement Learning-Based Computation Offloading in UAV Swarm-Enabled Edge Computing for Surveillance Applications

被引:13
|
作者
Huda, S. M. Asiful [1 ]
Moh, Sangman [1 ]
机构
[1] Chosun Univ, Dept Comp Engn, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Aerial computing; computation offloading; deep reinforcement learning; double deep Q-learning; mobile edge computing; multi-agent reinforcement learning; unmanned aerial vehicle; STACKELBERG GAME; OPTIMIZATION; ALLOCATION; NETWORKS;
D O I
10.1109/ACCESS.2023.3292938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of the Internet of Things and wireless communication has resulted in the emergence of many latency-constrained and computation-intensive applications such as surveillance, virtual reality, and disaster monitoring. To satisfy the computational demand and reduce the prolonged transmission delay to the cloud, mobile edge computing (MEC) has evolved as a potential candidate that can improve task completion efficiency in a reliable fashion. Owing to its high mobile nature and ease of use, as promising candidates, unmanned aerial vehicles (UAVs) can be incorporated with MEC to support such computation-intensive and latency-critical applications. However, determining the ideal offloading decision for the UAV on basis of the task characteristics still remains a crucial challenge. In this paper, we investigate a surveillance application scenario of a hierarchical UAV swarm that includes an UAV-enabled MEC with a team of UAVs surveilling the area to be monitored. To determine the optimal offloading policy, we propose a deep reinforcement learning based computation offloading (DRLCO) scheme using double deep Q-learning, which minimizes the weighted sum cost by jointly considering task execution delay and energy consumption. A performance study shows that the proposed DRLCO technique significantly outperforms conventional schemes in terms of offloading cost, energy consumption, and task execution delay. The better convergence and effectiveness of the proposed method over conventional schemes are also demonstrated.
引用
收藏
页码:68269 / 68285
页数:17
相关论文
共 50 条
  • [1] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [2] Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted Edge Computing
    Zhang, Peiying
    Su, Yu
    Li, Boxiao
    Liu, Lei
    Wang, Cong
    Zhang, Wei
    Tan, Lizhuang
    [J]. DRONES, 2023, 7 (03)
  • [3] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [4] Distributed Deep Learning-based Task Offloading for UAV-enabled Mobile Edge Computing
    Mukherjee, Mithun
    Kumar, Vikas
    Lat, Ankit
    Guo, Mian
    Matam, Rakesh
    Lv, Yunrong
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1208 - 1212
  • [5] Deep Reinforcement Learning-based computation offloading and distributed edge service caching for Mobile Edge Computing
    Xie, Mande
    Ye, Jiefeng
    Zhang, Guoping
    Ni, Xueping
    [J]. COMPUTER NETWORKS, 2024, 250
  • [6] Computation offloading Optimization in Edge Computing based on Deep Reinforcement Learning
    Zhu Qinghua
    Chang Ying
    Zhao Jingya
    Liu Yong
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1552 - 1558
  • [7] DEEP REINFORCEMENT LEARNING FOR COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN BLOCKCHAIN-BASED MULTI-UAV-ENABLED MOBILE EDGE COMPUTING
    Mohammed, Abegaz
    Nahom, Hayla
    Tewodros, Ayall
    Habtamu, Yasin
    Hayelow, Gebrye
    [J]. 2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 295 - 299
  • [8] ADRLO: Adaptive deep reinforcement learning-based offloading for edge computing
    Li, Zhigang
    Wang, Yutong
    Zhang, Wentao
    Li, Shujie
    Sun, Xiaochuan
    [J]. PHYSICAL COMMUNICATION, 2023, 61
  • [9] Reinforcement learning-based computation offloading in edge computing: Principles, methods, challenges
    Luo, Zhongqiang
    Dai, Xiang
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 89 - 107
  • [10] Deep Reinforcement Learning-Based Adaptive Computation Offloading and Power Allocation in Vehicular Edge Computing Networks
    Qiu, Bin
    Wang, Yunxiao
    Xiao, Hailin
    Zhang, Zhongshan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024,