AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge

被引:2
|
作者
de Vente, Coen [1 ,2 ,3 ]
Vermeer, Koenraad A. [4 ]
Jaccard, Nicolas [5 ]
Wang, He [6 ,7 ]
Sun, Hongyi [8 ]
Khader, Firas [9 ]
Truhn, Daniel [9 ]
Aimyshev, Temirgali [10 ]
Zhanibekuly, Yerkebulan [10 ]
Le, Tien-Dung [11 ]
Galdran, Adrian [12 ,13 ]
Ballester, Miguel Angel Gonzalez [12 ,14 ,24 ]
Carneiro, Gustavo [13 ,15 ]
Devika, R. G. [16 ]
Sethumadhavan, Hrishikesh Panikkasseril [17 ]
Puthussery, Densen [17 ]
Liu, Hong [18 ]
Yang, Zekang [18 ]
Kondo, Satoshi [19 ]
Kasai, Satoshi [20 ]
Wang, Edward [21 ]
Durvasula, Ashritha [21 ]
Heras, Jonathan [22 ]
Zapata, Miguel Angel [23 ]
Araujo, Teresa [25 ]
Aresta, Guilherme [25 ]
Bogunovic, Hrvoje [25 ]
Arikan, Mustafa [26 ]
Lee, Yeong Chan [27 ]
Cho, Hyun Bin [28 ]
Choi, Yoon Ho [28 ,29 ]
Qayyum, Abdul [30 ]
Razzak, Imran [31 ]
van Ginneken, Bram [3 ]
Lemij, Hans G.
Sanchez, Clara I. [1 ,2 ]
机构
[1] Univ Amsterdam, Informat Inst, Quantitat Healthcare Anal QurAI Grp, NL-1098 XH Amsterdam, Netherlands
[2] Amsterdam UMC Locatie AMC, Dept Biomed Engn & Phys, NL-1105 AZ Amsterdam, Noord Holland, Netherlands
[3] Radboudumc, Dept Radiol & Nucl Med, Diagnost Image Anal Grp DIAG, NL-6500 HB Nijmegen, Gelderland, Netherlands
[4] Rotterdam Eye Hosp, Rotterdam Ophthalm Inst, NL-3011 BH Rotterdam, Netherlands
[5] Project Orbis Int Inc, New York, NY 10017 USA
[6] Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[7] Capital Med Univ, Xuanwu Hosp, Beijing 100053, Peoples R China
[8] Tsinghua Univ, Dept Automat, Beijing 100190, Peoples R China
[9] Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, D-52074 Aachen, Germany
[10] CMC Technol LLP, Z05T0B8, Nur Sultan, Kazakhstan
[11] KBC, B-1080 Brussels, Belgium
[12] Univ Pompeu Fabra, Dept Tecnol Informacio & Comunicac DTIC, Barcelona 08018, Spain
[13] Univ Adelaide, Australian Inst Machine Learning AIML, Adelaide, SA 5000, Australia
[14] ICREA, Barcelona 08010, Spain
[15] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, England
[16] Coll Engn Trivandrum, Thiruvananthapuram 695016, India
[17] Founding Minds Software, Thiruvananthapuram 682030, India
[18] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[19] Muroran Inst Technol, Muroran 0508585, Japan
[20] Niigata Univ Hlth & Welf, Niigata 9503102, Japan
[21] Univ Western Ontario, Schulich Sch Med & Dent, London, ON N6A 5C1, Canada
[22] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
[23] Hosp Valle De Hebron, Sant Cugat Del Valles 08195, Spain
[24] UPRetina, Barcelona 08195, Spain
[25] Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Reti, A-1090 Vienna, Austria
[26] UCL, Inst Ophthalmol, London EC1V 9EL, England
[27] Samsung Med Ctr, Res Inst Future Med, Seoul 06351, South Korea
[28] Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Digital Hlth, Seoul 06351, South Korea
[29] Mayo Clin, Dept Artificial Intelligence & Informat, Jacksonville, FL 32224 USA
[30] Kings Coll London, Dept Biomed Engn, London, England
[31] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 3125, Australia
关键词
Color fundus photography; glaucoma screening; out-of-distribution detection; retina; robustness; LIFE VISUAL IMPAIRMENT; PREVALENCE;
D O I
10.1109/TMI.2023.3313786
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening.
引用
收藏
页码:542 / 557
页数:16
相关论文
共 50 条
  • [1] Applications of Artificial Intelligence in the Screening of Glaucoma in China
    Yue Zhang
    Ningli Wang
    Hanruo Liu
    [J]. Journal of Medical Systems, 2020, 44
  • [2] Applications of Artificial Intelligence in the Screening of Glaucoma in China
    Zhang, Yue
    Wang, Ningli
    Liu, Hanruo
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (07)
  • [3] Novel Technologies in Artificial Intelligence and Telemedicine for Glaucoma Screening
    Christopher, Mark
    Hallaj, Shahin
    Jiravarnsirikul, Anuwat
    Baxter, Sally L.
    Zangwill, Linda M.
    [J]. JOURNAL OF GLAUCOMA, 2024, 33 : S26 - S32
  • [4] Diagnostic Accuracy of Artificial Intelligence in Glaucoma Screening and Clinical Practice
    Chaurasia, Abadh K.
    Greatbatch, Connor J.
    Hewitt, Alex W.
    [J]. JOURNAL OF GLAUCOMA, 2022, 31 (05) : 285 - 299
  • [5] Artificial intelligence in glaucoma
    Nair, Megha
    Tagare, Shivraj
    Venkatesh, Rengaraj
    Odayappan, Annamalai
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2022, 70 (05) : 1868 - 1869
  • [6] Artificial intelligence in glaucoma
    Zheng, Chengjie
    Johnson, Thomas V.
    Garg, Aakriti
    Boland, Michael V.
    [J]. CURRENT OPINION IN OPHTHALMOLOGY, 2019, 30 (02) : 97 - 103
  • [7] THE CHALLENGE OF SCREENING FOR GLAUCOMA
    SHIELDS, MB
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 1995, 120 (06) : 793 - 795
  • [8] Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification
    Camara, Jose
    Neto, Alexandre
    Pires, Ivan Miguel
    Villasana, Maria Vanessa
    Zdravevski, Eftim
    Cunha, Antonio
    [J]. JOURNAL OF IMAGING, 2022, 8 (02)
  • [9] The Challenge of Artificial Intelligence
    Zaleski, Jeff
    [J]. PARABOLA, 2015, 40 (03): : 74 - 83
  • [10] The challenge of artificial intelligence
    Reddy, R
    [J]. COMPUTER, 1996, 29 (10) : 86 - &