On parameter bias in earthquake sequence models using data assimilation

被引:4
|
作者
Banerjee, Arundhuti [1 ]
van Dinther, Ylona [2 ]
Vossepoel, Femke C. [1 ]
机构
[1] Delft Univ Technol, Dept Geosci & Engn, Stevinweg 1, NL-2628 CN Delft, Netherlands
[2] Univ Utrecht, Dept Earth Sci, Princetonlaan 4, NL-3584 CB Utrecht, Netherlands
关键词
SINGLE DEGREE; FRICTION; SLIP; SYSTEM; FAULT; MOTION; ERRORS;
D O I
10.5194/npg-30-101-2023
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. We investigate whether data assimilation can estimate current and future fault states, i.e., slip rate and shear stress, in the presence of a bias in the friction parameter. We perform state estimation as well as combined state-parameter estimation using a sequential-importance resampling particle filter in a zero-dimensional (0D) generalization of the Burridge-Knopoff spring-block model with rate-and-state friction. Minor changes in the friction parameter epsilon can lead to different state trajectories and earthquake characteristics. The performance of data assimilation with respect to estimating the fault state in the presence of a parameter bias in epsilon depends on the magnitude of the bias. A small parameter bias in epsilon (+3 %) can be compensated for very well using state estimation (R-2 = 0.99), whereas an intermediate bias (-14 %) can only be partly compensated for using state estimation (R-2 = 0.47). When increasing particle spread by accounting for model error and an additional resampling step, R-2 increases to 0.61. However, when there is a large bias (-43 %) in epsilon, only state-parameter estimation can fully account for the parameter bias (R-2 = 0.97). Thus, simultaneous state and parameter estimation effectively separates the error contributions from friction and shear stress to correctly estimate the current and future shear stress and slip rate. This illustrates the potential of data assimilation for the estimation of earthquake sequences and provides insight into its application in other nonlinear processes with uncertain parameters.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [1] An improved state-parameter analysis of ecosystem models using data assimilation
    Chen, M.
    Liu, S.
    Tieszen, L. L.
    Hollinger, D. Y.
    ECOLOGICAL MODELLING, 2008, 219 (3-4) : 317 - 326
  • [2] On stochastic parameter estimation using data assimilation
    Hansen, James A.
    Penland, Cecile
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 88 - 98
  • [3] Bias and data assimilation
    Dee, D. P.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3323 - 3343
  • [4] Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models
    Luo, Yiqi
    Weng, Ensheng
    Wu, Xiaowen
    Gao, Chao
    Zhou, Xuhui
    Zhang, Li
    ECOLOGICAL APPLICATIONS, 2009, 19 (03) : 571 - 574
  • [5] The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
    Plaza, D. A.
    De Keyser, R.
    De Lannoy, G. J. M.
    Giustarini, L.
    Matgen, P.
    Pauwels, V. R. N.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (02) : 375 - 390
  • [6] Assimilation of Paleoseismic Data for Earthquake Simulation
    Lisa B. Grant
    Miryha M. Gould
    pure and applied geophysics, 2004, 161 : 2295 - 2306
  • [7] Determination of Navier's slip parameter using data assimilation
    Jarolimova, Alena
    Hron, Jaroslav
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 489
  • [8] Assimilation of paleoseismic data for earthquake simulation
    Grant, LB
    Gould, MM
    PURE AND APPLIED GEOPHYSICS, 2004, 161 (11-12) : 2295 - 2306
  • [9] Data assimilation in the presence of forecast bias
    Dee, DP
    Da Silva, AM
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (545) : 269 - 295
  • [10] Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: a review
    Shaoqing Zhang
    Zhengyu Liu
    Xuefeng Zhang
    Xinrong Wu
    Guijun Han
    Yuxin Zhao
    Xiaolin Yu
    Chang Liu
    Yun Liu
    Shu Wu
    Feiyu Lu
    Mingkui Li
    Xiong Deng
    Climate Dynamics, 2020, 54 : 5127 - 5144